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The purpose of this research project was to evaluate techniques to

improve the application of in situ penetration testing to Florida soils,

with emphasis on the electronic cone penetrometer test (ECPT).

Statistical Analysis was used to describe the spatial variability of

soil properties, to classify Florida soils with the ECPT, and to

correlate the ECPT with the standard penetration test (SPT).

The spatial variability study was carried out to evaluate methods

of interpolation between test soundings. The techniques studied

included three deterministic approaches, three distance-weighting

methods, a random field model, and regression analysis.

The ECPT classification study used discriminant analysis of cone

data on soils that had been identified from the SPT test. The ECPT was

able to group soil accurately into one of seven categories (organics,

clay, silt, clayey sand, silty sand, sand, weathered rock) approximately

40% of the time.

In the SPT-ECPT correlation study, average q /N ratios for Florida 2



soils were much higher than expected, possibly due to cementation or

liquefaction. Regression analysis of the data suggested that the nature

of the SPT-ECPT relationship is more a function of the magnitude of the

cone resistance, and less of the actual soil type. ' .,,.
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The purpose of this research project was to evaluate techniques to

improve the application of in situ penetration testing to Florida soils,

with emphasis on'the electronic cone penetrometer test (ECPT). Topics

addressed included describing the spatial variability of soil

properties, classifying Florida soils with the ECPT, and correlating the

ECPT with the standard penetration test (SPT). A collateral purpose was

to create an in situ test data base consisting of 97 ECPT soundings and

79 SPT tests. This data base was subsequently evaluated using

statistical analysis.

The spatial variability study was carried out to evaluate methods

of interpolation between test soundings. The techniques studied

included three deterministic approaches (the mean, median, and a 10%

trimmed average), three distance-weighting methods (two based on

reciprocal distances, and linear interpolation), a random field model (a

hybrid distance-weighting/regression model), and regression analysis.

While none of the approaches stood out as consistently superior

xv



predictors, the deterministic approaches were generally inferior to the

other, more sophisticated methods. The distance-weighting methods and

the random field model performed comparably, but were sensitive to

individual test soundings. The regression models predicted slightly

better on the average, and with more stability.

The ECPT classification study used parametric and nonparametric

discriminant analysis of cone data on soils that had been identified

from the SPT test. The ECPT was able to group soil accurately into one

of seven categories (organics, clay, silt, clayey sand, silty sand,

sand, weathered rock) approximately 40% of the time. This percentage

increased to 70% when the three sand categories were combined,

reflecting the SPT drillers' difficulties in discriminating silty soils.

In the SPT-ECPT correlation study, average qc/N ratios for Florida

soils were much higher than expected, possibly due to cementation or

liquefaction. Regression analysis of the data suggested that the nature

of the SPT-ECPT relationship is more a function of the magnitude of the

tip resistance, and less of the actual soil type.
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CHAPTER 1
INTRODUCTION

Seeking solutions to the problems of transferring superstructure

loads to the supporting ground is typically the responsibility of the

geotechnical engineer. Solutions to this interface problem are many and

diverse depending on the nature and magnitude of the loads involved; the

geology of the site; and the economic, environmental, and political

climate of the project. The economic impact of foundations can be

considerable. Vanikar reports that nearly 20% of approximately 2.6

billion dollars worth of highway construction by the Federal Highway

Administration and the state transportation departments in fiscal year

1984 was spent on foundations (62).

In all but the simplest of projects, a site investigation of the

underground conditions is necessary. This investigation, which usually

costs between 0.5 and 1% of the total construction costs (8), should

provide the geotechnical engineer with enough information to

characterize the site geology, select the type of foundation required,

determine the load capacity of the soil and/or rock, and estimate the

settlements of the superstructure. There is a large number of in situ

tests and equipment available to help obtain this information, including

the standard penetration test (SPT), the cone penetration test (CPT),

the Marchetti dilatometer test (DMT), the Menard and the self-boring

pressuremeters, the vane shear test, and others.
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The Florida Department of Transportation (FDOT) uses the SPT and

the CPT in the design of axially loaded pile foundations (53). In the

standard penetration test, a standard split-barrel sampler is attached

to drill rods and inserted into a predrilled borehole. The sampler is

then driven 45.7 cm (18 in) using a 63.6 kg (140 Ib) hammer and a 76.2

cm (30 in) drop height. The split-barrel sampler is then withdrawn and

opened, providing a physical sample of the soil. The SPT "N-value"

equals the number of blows for the final 30.5 cm (12 in) of penetration.

These N-values have been correlated to many soil parameters despite

considerable criticism as to their reproducibility. The SPT is

standardized by the American Society for Testing and Materials (ASTM)

Standard Method D 1586 (2).

In the cone penetration test using an electronic cone penetrometer

(designated ECPT), a cylindrical rod with a conical point is pushed into

the ground at a constant, slow rate, and the force on the point is

measured by an internal strain gauge. A second strain gauge measures

the force caused by friction on a free-floating friction sleeve. The

ECPT provides an accurate description of the subsurface stratification

and, from simple correlations, an estimate of the soil type. Also, many

soil properties have been correlated with the ECPT measurements. The

principal disadvantages of the cone penetration test are the lack of a

soil sample from the test, and the penetrometer's limited ability to

penetrate stiff soil layers. The CPT is standardized by the ASTM

Standard Method D 3441 (2).

The design procedures for pile foundations depend on an accurate

representation of the soil at the location of the pile, both in terms of

the measured or estimated soil properties, and the type of soil.



3

Uncertainty in the input parameters determined by the SPT or CPT will

naturally result in uncertainty in the calculated pile load capacity.

The need exists to describe and quantify the uncertainty in the input

parameters, as well as to use procedures which minimize the uncertainty

associated with a site investigation program.

Purpose of Research

The purpose of this research project is to evaluate methods to

improve the use of in situ penetration tests for the geotechnical site

investigation of soils indigenous to Florida. In support of the

University of Florida's driven pile study, the project concentrates on

construction sites employing driven pile foundations. The primary in

situ device to be evaluated is the electronic cone penetrometer, which

is thought to model a pile foundation. This emphasis is the result of

the ECPT's faster speed, better reproducibility, and lower cost relative

to the standard penetration test.

Specifically, methods to describe the spatial variability of soil

properties will be evaluated with the purpose of determining the method

which can best interpolate test measurements between soundings. The

ability of the ECPT to classify Florida soil types will also be

evaluated, and procedures recommended to improve current Florida

practice. Finally, correlations between the SPT N-values and the ECPT

cone resistance and friction resistance will be determined. These

correlations will be valuable in situations when the cone penetrometer

test cannot be used due to stiff soil layers or difficult access.

A collateral purpose for this research project is to develop a data

base of pile load tests and in situ tests for Florida. Such a data base
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will prove extremely valuable to future geotechnical research on Florida

soils.

Research Methodology

The initial phase of the research project involved setting up a

data base of pile load tests and in situ tests performed throughout

Florida. A letter soliciting data and site access was sent to all of

the FDOT district geotechnical engineers, and to many private

geotechnical consulting firms. As a result of the letter and follow-up

telephone contacts, a significant amount of information was collected.

These data included site plans, pile load tests, pile driving records,

standard penetration tests, mechanical and electronic cone penetration

tests, wave equation analyses (CAPWAPC), and Marchetti dilatometer data.

Numerous trips to sites with driven pile load tests were also made in

order to collect electronic cone penetration test (ECPT) data using the

University of Florida cone penetration testing vehicle and equipment.

In order to handle this large data base and to run statistical

analyses on the data, the SASTM System was used (SAS is a registered

trademark of the SAS Institute Inc., of Cary, North Carolina). The SAS

System is computer software that provides data retrieval and management,

reporting and graphics capabilities, and an extensive array of

elementary and advanced statistical analysis procedures (47,48,49,51).

As the data were collected, they were encoded and stored on a computer

for future analysis. To date the encoded data base includes pile load

tests (PLTs), electronic cone penetration tests (ECPTs), standard

penetration tests (SPTs), and some mechanical cone penetration tests

(MCPTs). Additional data are on file at the University of Florida, and
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can be encoded as required by future research. Chapter 2 describes the

data base used by this research project.

Once the in situ test data were available to the SAS System, the

individual data sets were combined into larger sets (depending on the

nature of the study) for statistical analysis. The spatial variability

studies were accomplished using the SAS data manipulation and reporting

capabilities, coupled with regression analysis and 3xploratory data

analysis. The soil classification study employed the SAS discriminant

analysis procedures. The SPT/ECPT correlation study used exploratory

data analysis and regression analysis.



CHAPTER 2

PROJECT DATA BASE

Introduction

The data base was created in support of the University of Florida

Department of Civil Engineering's Deep Foundations Project, sponsored by

the Florida Department of Transportion. The specific focus of this

phase of the project is the design of axially-loaded driven piles and

pile groups. As a result, data were solicited on construction sites

having driven pile load test data. Letters and telephone calls were

made to all of the FDOT district geotechnical engineers, and to many

geotechnical consultants in Florida. When suitable sites were

identified, all available geotechnical data were obtained.

In order to obtain electronic cone penetration test (ECPT) data

coinciding with the pile load tests (PLTs), site visits were made to

perform ECPTs if the data were not otherwise available (which was

generally the case). ECPT soundings were made near the pile load tests,

and also adjacent to standard penetration test borings that were near

the PLTs. These latter soundings were designed to support the

classification study of the ECPT.

This chapter describes the nature and extent of the entire project

data base. Subsequent chapters describe the parts of the data base used

for the individual analyses. This chapter also describes the procedures

and equipment used for the ECPTs performed by the University of Florida,

6
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including a discussion of some of the problems and limitations

associated with the electronic cone penetration test.

Extent of Data Base

Figure 2-1 is a map of the State of Florida, showing the thirteen

cities where test data were collected. Table 2-1 summarizes the number

of tests at each site that have been entered into the computer data

base. Note that multiple pile load tests at a site usually indicate

multiple tests on the same pile (either the pile was redriven, or a

tension test was performed). Note also that additional data from many

of the sites are available, but have not yet been encoded and stored in

the computer. These tests are generally either not pertinent to this

study (the Marchetti dilatometer tests for instance), or are not close

to pile load tests of interest. The majority of these data is comprised

of SPT and MCPT data.

A more extensive description of the Table 2-1 data base is located

in Appendix A, which is an index of the data base. This index is

organized by location (generally of the pile load test). Each

individual test is identified by a prefix to identify the type of test,

a number to identify the location, and a suffix to identify individual

tests. The prefixes are shown below the test abbreviations in Table

2-1. For instance, CO01B is an electronic cone penetration test (the

prefix C) at Pier 3 of the Apalachicola River bridge (the number 001),

and is the second test at that location (the suffix B). The index

includes information on general soil conditions, a description of the

pile used in the pile load test, the file name used by the source of the

data, and any important additional comments. The data base itself is

contained in Knox (25).
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Table 2-1. Data Base Summary

LOCATION PLTs ECPTs SPTs MCPTs
NUMBER SITE iPn M M£S i)

001 Apalachicola River Bridge--Pier 3 1 2 20 4
002 Apalachicola River Bridge--Bent 16 1 2 0 2
003 Apalachicola Bay Bridge--Bent 22 1 2 0 4
004 Overstreet Bridge--Pier 11 1 4 2 0
005 Overstreet Bridge--Pier 16 1 4 4 0
006 Sarasota Garage--SP7 2 4 4 0
007 Sarasota Garage--SP5 2 4 5 0
008 Sarasota Condo 2 2 5 0
009 Sarasota Landfill 0 3 3 0
010 Fort Myers--Concrete Pile 2 8 2 0
011 Fort Myers--Steel Pile 1 0 0 0
012 Fort Myers Airport 0 2 2 0
013 Port Orange--Bent 19 1 2 0 2
014 Port Orange--Bent 2 1 1 1 2
015 West Palm 1-95--Pier B-4 1 3 1 0
016 West Palm 1-95--Pier B-6 0 3 1 0
017 West Palm 1-95--Pier B-9 1 2 1 0
018 West Palm 1-95--Pier C-2 1 0 1 2
019 Choctawhatchee Bay--Pier 1 1 13 3 1
020 Choctawhatchee Bay--Pier 4 1 2 1 2
021 Choctawhatchee Bay--Bent 26 1 4 1 3
022 White City 0 3 3 3
023 Orlando Arena 2 4 5 0
024 Orlando Hotel South 1 2 2 0
025 Orlando Hotel North 1 1 1 0
026 Orlando Hotel Northeast I 1 1 0
027 Jacksonville Terminal B-20 2 3 1 0
028 Jacksonville Terminal B-21 2 2 1 0
029 Archer Landfill 0 7 2 0
030 West Bay Bridge 0 6 6 0
031 Lake Wauberg 0 1 0 0

TOTALS 31 97 79 25

Site Descriptions

Apalachicola River and Bay Bridges (Sites 001 - 003)

The Apalachicola River and Bay bridges are replacement structures

for older bridges on U.S. Highway 98 in Apalachicola. Both are FDOT

projects. The Apalachicola River bridge is a 1153 m (3783 ft) structure
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running generally east and west, with a turn to the north on its western

end. The Apalachicola Bay bridge is a 4321 m (14175 ft) structure

traversing the bay east and west.

The available test data for these sites include test pile driving

records, CAPWAPC analyses, pile load tests (PLTs), standard penetration

tests (SPTs), Marchetti dilatometer tests (DMTs), mechanical cone

penetration tests (MCPTs), and University of Florida electronic cone

penetration tests (ECPTs). The soils are predominantly clays, sands,

and clay/sand mixtures. Figure 2-2 locates the Apalachicola River

bridge SPTs used in the spatial variability studies. Figures 2-3

through 2-5 locate the available in situ soil test data available near

the pile load tests in the data base.

Overstreet Bridge (Sites 004 - 005)

The Overstreet bridge is a 962 m (3157 ft) structure over the

Intracoastal Waterway on State Road 386, near the town of Overstreet,

Florida. This FDOT project is a replacement for an old floating pivot

bridge. The available test data include test pile driving records,

PLTs, SPTs, MCPTs, and ECPTs. The soils are mostly sand, with some

clayey sand and clay. Figures 2-6 and 2-7 locate the available in situ

soil test data near the pile load tests in the data base.

Sarasota Garage and Condo (Sites 006 - 008)

The Sarasota parking garage (Sites 006 and 007) and the Sarasota

condo site (Site 008) are supported by a pile foundation designed by

Ardaman & Associates of Sarasota. The available test data include test

pile driving records, PLTs, SPTs, and ECPTs. The soils at the parking

g - I a H I I i i
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garage are mostly sand overlying limestone rock at approximately 7.6 m

depth (25 ft). The condo site is predominantly fine sand and clayey

sand overlying limestone at approximately 5.5 m depth (18 ft). Figures

2-8 and 2-9 locate the available in situ soil test data near the pile

load tests in the data base.

Sarasota Landfill (Site 009)

The Sarasota (Manatee County) landfill is located north of

Sarasota. No pile load tests are available for this site, but Ardaman &

Associates of Sarasota provided some SPT data, which were supplemented

with UF ECPT soundings. ECPT sounding COO9A is 0.76 m (2.5 ft) from SPT

sounding SO09A; 122 m (400 ft) southeast, CO09B is 0.76 m from S009B;

61 m (200 ft) further southeast, CO09C is 0.5 m (1.5 ft) from S009C.

The soils at the landfill are mostly clayey fine sand, with some clay

and sandy clay.

Fort Myers Interchange (Sites 010 - 011)

The Fort Myers site is a highway interchange project designed by

Greiner Engineering of Tampa, with Law Engineering Testing Company of

Naples serving as the geotechnical consultant. Available test data

include test pile driving logs, pile load tests, SPTs, and ECPTs.

Several of the ECPTs were rate-controlled tests (0.5 to 2.0 cm/s),

although the nonstandard tests were not used in this project. The soil

is sand and sand/clay mixture overlying cemented clayey sand at a depth

of 31 m (102 ft). Figure 2-10 locates the test data in the data base.
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Fort Myers Airport (Site 012)

The Fort Myers airport site is an interchange project, with Law

Engineering Testing Company of Naples serving as the geotechnical

consultant. Available test data include SPTs, ECPTs, and some

laboratory test data. The soil is comprised of sand and sand/silt/clay

mixtures, interbedded with weak to competent limestone layers. Two SPT

sites were used, separated by approximately 23 m (75 ft). ECPT sounding

C012A is 1.37 m (4.5 ft) from SPT S012A, and C012B is 1.52 m (5 ft) from

S012B.

Port Orange (Sites 013 - 014)

The Port Orange site is an FDOT bridge on State Road AIA over the

Halifax River. The foundation for this bridge uses driven piles on the

approaches and drilled shafts under the main spans. The data base

includes PLTs, SPTs, MCPTs, ECPTs (both UF and FDOT), CAPWAPC analyses,

and laboratory analyses. The soil is mostly shelly sand and sandy silt,

with a 4.5 to 6m (15 to 20 ft) thick clay layer overlying limestone at

approximately 26 m (85 ft) in depth. Figures 2-11 and 2-12 identify the

test data near the pile load tests in the data base.

West Palm 1-95 (Sites 015 - 018)

This recently-completed project consisted of ramps and overpasses

for Interstate 95 in Palm Beach County. The data base include test pile

driving records, PLTs, SPTs, ECPTs (for the P.G.A. Boulevard ramp, Sites

015 - 017), and MCPTs (for the Military Trail overpass, Site 018). The

soil is fine sand with a small amount of clayey fine sand. Figures 2-13

through 2-16 locate the test data near the pile load tests.
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Choctawhatchee Bay (Sites 019 - 021)

The Choctawhatchee Bay bridge is a replacement structure for an

older bridge on State Road 83 (U.S. 331). The bridge portion of this

FDOT project is approximately 2296 m (7534 ft) long, running north and

south. Available test data include PLTs, SPTs, MCPTs, ECPTs (both FDOT

and UF), DMTs (available from FDOT), and laboratory test data performed

by both the FDOT and the University of Florida. The soils are

predominantly sand overlying some clays and clayey sand on the southern

approach to the bridge, with the clays increasing as you proceed north.

Many of the ECPTs on the south side of the bridge were used in the

spatial variability studies. Figures 2-17 and 2-18 identify the in situ

test data in the data base.

White City (Site 022)

The White City bridge is a replacement structure over the

Intracoastal Waterway on State Road 71. The bridge portion of this FDOT

project is approximately 549 m (1800 ft) long, running north and south.

Available test data include SPTs, MCPTs, ECPTs, and laboratory data.

Pile load test data should be available in the near future. The soils

are mostly sand, with some clayey sand. Figures 2-19 and 2-20 locate

the available test data near the UF ECPTs.

Orlando Arena (Site 023)

The Orlando Arena is a 15,000 plus-seat structure constructed by

the City of Orlando. Jammal & Associates of Orlando performed the

geotechnical investigation, and kindly provided all of the test data

used in this project. Available data include test pile driving records,
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PLTs, auger borings, SPTs, ECPTs, and laboratory test data. The site is

mainly sand overlying mixed clay and sand at depths of 12 to 18 m (40 to

60 ft), with consolidated clays and silts being encountered at depths of

approximately 33.5 m (110 ft). Figure 2-21 locates the in situ test

data used in this project.

Orlando Hotel (Sites 024 - 026)

The Orlando Hotel is a proposed high-rise structure in downtown

Orlando. Jammal & Associates of Orlando performed the geotechnical

investigation, and provided all of the test data used in this project.

Available data include test pile driving records, PLTs, SPTs, ECPTs, and

laboratory test data. The site is comprised of a surficial sand fill

overlying fine sand with some silt and clay to a depth of 13 to 16 m (43

to 53 ft). Below this depth are mixed sands, silts, and clays

characteristic of the Hawthorn Formation. Figure 2-22 identifies the

test data used in this project.

Jacksonville Terminal (Sites 027 - 028)

This project was the addition of a coal conveyer system to the

St. John's River Coal Terminal on Blount Island. The geotechnical

consultant for the project was Law Engineering of Jacksonville. The

available data include test pile driving records, PLTs, CAPWAPC

analyses, SPTs, and ECPTs. The exact location of the PLTs and SPTs

could only be estimated at the time of the electronic cone penetration

tests, but all tests are believed to be very near one another. The

three ECPTs were spaced in a line at 1.5 m (5 ft) increments for Site

027, whereas the two ECPTs at Site 028 were 1.8 m (6 ft) apart. The

soils are predominantly fine sand and silty sand.
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Archer Landfill (Site 029)

This Alachua County landfill site is covered by'ancient sand dunes

which overlie limestone at approximately 15 m (50 ft) of depth. The

source for the data at this site is a Master's thesis by Basnett (7).

The site is remarkably uniform, and was used for the spatial variability

studies. Available soils data include SPTs, ECPTs, UF laboratory data,

and DMTs. Figure 2-23 identifies the test sites pertinent to this

study.

West Bay (Site 030)

The West Bay site is an FDOT bridge on State Road 79. All of the

in situ test data for this site was provided by the FDOT, and includes

approximately 29 SPTs and 14 ECPTs. Laboratory data from both FDOT and

UF are also available. The soils are mostly fine sand with some silts

and clays. Some of the silty sand is slightly cemented. Figure 2-24

locates the test data used in this project.

Lake Wauberg (Site 031)

The Lake Wauberg site is located on University of Florida property

south of Gainesville. The ECPT sounding for this site came from Basnett

(7). This sounding was correlated with the results of UF laboratory

analyses on recovered samples of highly plastic clays and elastic silts,

the results of which are included in the classification studies.
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Collection of ECPT Data

Equipment

All of the electronic cone penetration test data was obtained using

University of Florida equipment, with the exception of two of the Port

Orange soundings (source: FDOT), the Orlando data (source: private

consultant), and the West Bay data (source: FDOT). Three electronic

friction-cone penetrometers were used in the research, rated at 5-tons

(metric), 10-tons, and 15-tons respectively. All three are subtraction-

type friction-cone penetrometer tips marketed by Hogentogler and

Company, Inc. of Columbia, Maryland. Figure 2-25 is a schematic drawing

of a subtraction-type penetrometer tip.

The American Society of Testing and Materials (ASTM) has

standardized the cone penetrometer and the cone penetration test in ASTM

Standard D 3441 (2). The standard penetrometer tip has a 60° cone with

a base diameter of 35.7 mm (1.406 in.), resulting in a projected area of

10 cm2 (1.55 in.2). The standard friction sleeve has the same outside

diameter as the cone, and a surface area of 150 cm2 (23.2 in.2). The UF

5-ton and 10-ton penetrometer tips conform to this standard, whereas the

15-ton penetrometer's 60° cone has a base diameter of 43.7 mm (1.72 in.)

for a projected area of 15 cm2 (2.33 in.2). The friction sleeve,

however, has the standard 150 cm2 surface area.

Two primary measurements are made by the friction-cone

penetrometer. The cone resistance, qc, is defined as the vertical force

applied to the cone divided by its projected area. The friction

resistance, fs, is the vertical force applied to the friction sleeve

divided by its surface area. The friction resistance is comprised of

both frictional and adhesive forces.
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One of the advantages of electronic penetrometers is that other

electrical measuring devices can be incorporated into the tip housing to

provide additional and specialized information about the soil being

penetrated. The UF penetrometer tips incorporate two additional

devices, an inclinometer and a pore pressure transducer.

The precision optical inclinometer is primarily a safety device.

It measures the angular deviation of the penetrometer tip from vertical

during penetration, warning the operator of possible drifting during

penetration of stiff layers.

Dynamic pore pressures are measured using a small pressure

transducer mounted within the penetrometer tip. The plastic porous

filter element is located immediately behind the cone. The filter

element is carefully boiled in a water/glycerin mixture to completely

saturate it. Saturation of the tip is maintained prior to use by a

rubber sheath around the filter element.

Insertion of the penetrometer tip and collection of the data were

accomplished using the University of Florida's cone penetrometer testing

truck. This vehicle includes a 20-metric-ton hydraulic ram assembly,

four independently-controlled jacks for leveling, and a computer-

operated data acquisition system. The data acquisition system is

comprised of a microprocessor with a 128k magnetic bubble memory, a

keyboard, a printer, and a graphics plotter. The system permits real

time monitoring of the ECPT test, built-in overload factors for safety,

and permanent recording of the data. The system is described in detail

in Davidson and Bloomquist (11). Figure 2-26 shows the UF penetrometer

testing vehicle.
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friction noise readings were poor prior to repair, however, reading as

much as 23 kPa (0.240 tsf) too high. Following repair, the maximum

friction noise was 7 kPa (0.073 tsf). The friction channel read as much

as 14 to 20 kPa too high for the higher friction resistance measurements

prior to the repair. All friction measurements made by the 15-ton cone

penetrometer prior to August 1988 are suspect as a result of the

calibration.

Baseline drift and negative values. The worst problem encountered

in the project was negative friction resistance measurements and

friction baseline drifts, primarily in the 15-ton penetrometer tip.

Physically, negative friction resistance measurements are impossible

since the friction sleeve is free-floating, recording a "true" friction

value only when the sleeve bears on a shoulder of the central core, as

shown in Figure 2-25. Therefore, some type of measurement error must be

present.

Several sources of the problems are possible (13,18-23,41,50).

Regarding the baseline drift problems, the manufacturer defines an

"allowable" drift of 1.0 to 1.5% of the full-scale reading. The 1.5%

limit equates to a drift of 1.5 MPa (15.7 tsf) for the qc channel, 15

kPa (0.157 tsf) for the fs channel, and 0.4 bar (5.8 psi) for the pore

pressure channel. Only the friction channel even approached this limit,

exceeding it on several occasions. While temperature effects on the

strain gauges may account for a small portion of the problem, the

literature suggests the single biggest cause of baseline drift is soil

and water ingress during a sounding. Therefore reasonably rigorous

attention to cleanliness (under field conditions) was exercised

throughout the project. Despite this care, the 15 kPa limit on friction
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baseline drift was approached fairly' regularly, slightly exceeded

occasionally, and on a few occasions was exceeded by a large amn';t.

All baseline drifts slightly exceeding 15 kPa were flagged in the data

base index (Appendix A), and all clearly unacceptable baselines we'e

discarded.

The negative friction readings (predominantly on the 15-ton

penetrometer tip) can be partially explained by the unstable baselines.

If the baseline value drifts positively 10 kPa, then a friction reading

that would have read 5 kPa under the original baseline now reads -5 kPa.

The manufacturer also notes that transient voltage surges may

temporarily affect measurement readings, resulting in negative values

(22). A third potential source for error is due to the design of the

subtraction-type electronic friction-cone penetrometer tip (41). The

cone load cell measures the cone resistance, and the friction load cell

measures the resistance on both the cone and the friction sleeve. The

friction resistance is then determined by subtracting the cone load cell

measurement from the friction load cell measurement. While this

particular design is rugged and robust, the calculation of a small

number (fs) by subtracting two large numbers is not good measurement

practice.

Weak soils. Accurate measurements in weak soils are extremely

difficult to obtain. A potential source of error is due to unequal end

areas on the cone and the friction sleeve (41,43,50). Below the water

table, pore pressures bear on the horizontal surfaces at the joints in

the penetrometer tip. For the UF 10-ton tip, these unequal end areas

would increase qc by 0.034 MPa/bar pressure (0.025 tsf/psi), and

increase fs by 1.0 kPa/bar (0.00072 tsf/psi). While the change in qc is
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virtually negligible over the normal range of pore pressures of -2 to 6

bars (-29 to 87 psi), the change in friction could be significant in

very weak soils, masking any measurements of friction. The unequal end

area calculations for the UF penetrometers are in Appendix B.

In order to account for the pore pressure effects on the

penetrometer tip joints, pore pressures can be monitored during

penetration. Only weak soils are significantly affected by the unequal

end area corrections, which is fortunate since less than 0.3% of the

ECPT soundings in the U.S. monitor pore pressures (36,42).

As a result primarily of problems with baseline drift, compounded

by questions relating to temperature compensation, unequal end area

effects, and measurement design of the subtraction-type penetrometer,

accurate measurements in weak soils are extremely difficult. Even with

careful attention to these problems the errors in measurements may be of

the same magnitude as the properties being measured. The ECPT can

easily identify the soil as weak, but discrimination among various weak

soils is less certain. While the electronic friction-cone penetrometer

is clearly a superior instrument for "average" soils, alternate testing

methods may be required to supplement the ECPT when such discrimination

in weak soil is required.



CHAPTER 3

LOCAL VARIABILITY IN CONE PENETROMETER TEST MEASUREMENTS

Introduction

Variability in soil property measurements can have many sources,

including measurement errors, signal noise, the innate randomness of

soil (on the "micro" scale), and the spatial variability of the soil

property (on the "macro" scale). The term "local variability" has been

adopted to describe the point-to-point variability of a measured soil

property, and encompasses the first three sources mentioned above. This

differentiation is important in spatial variability studies because

local variability could conceivably mask any area trends, producing

inconclusive results. As an example, Baecher notes that typical

measurement error variances for in situ measurements can account for 0

to 70% of the total data scatter (4). Without changes in measuring

equipment and techniques, the local variability in a measured soil

property must be accepted and considered in any design employing the

data.

The purpose of this phase of the research is to quantify the local

variability of cone penetrometer measurements used in the study. The

approach used was to identify pairs of CPT soundings in the data base

that were close to one another, and used the same size penetrometer.

Then using graphical and statistical techniques, the local variance was

described and quantified. Finally, a type of "digital filter" was

devised to reduce the variance while preserving the essence of the data.

40
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Local Variability Data Base

The research project data base was searched for pairs of ECPT

soundings that met two criteria: the soundings must be no more than 4.6

meters (15 feet) apart, and the same size cone penetrometer must have

been used in both soundings. The distance criteria was admittedly

somewhat arbitrary, and represented an attempt to include a

representative number of sounding pairs in the analysis, while hopefully

insuring that the penetrometers were sampling the "same" material.

The laboratory-type requirement that the material be the same for a

comparative analysis is virtually impossible to achieve in the field,

making criticism a certainty. If the soundings are too close, then

stress relief and other cross-hole interferences may result. If the

soundings are too far apart, then "different" soils may be tested due to

spatial variability. The minimum spacing was determined to be 36 cm (14

inches), based on Robertson and Campanella's recommendation of 10 hole

diameters from open boreholes and excavations, to allow for potential

radial stress relief effects (41). As a check on the maximum selected

spacing of 4.6 meters, the sounding pairs were graphically overlaid and

evaluated as to the likelihood that the material was approximately the

same. If reasonable doubt existed, the sounding was discarded from

further analysis. A typical comparison is shown in Figure 3-1.

The resulting data base used in the local variability study is

summarized in Table 3-1, and the actual soundings are identified in

Appendix A and Knox (25). Note that separation distances varied between

1.8 and 4.6 m (6 and 15 ft), and all three University of Florida

penetrometer tips are represented. At the Fort Myers site, the 5-ton

penetrometer tip was paired with the 10-ton tip, both of which are the
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standard 35.6 mm (1.4 inches) in diameter. A check of the results

showed that the Fort Myers data fell well within scatter for all

penetrometer pairs, so this pairing was judged acceptable. All other

pairings involved one cone penetrometer only. For the instances where

the friction baseline readings were unacceptable (as discussed in

Chapter 2), only the cone resistance data were used. The designation of

"Site #1" and "Site #2" was strictly arbitrary; hence any perceived

skewness in the plots favoring one sounding or another could easily be

reversed by simply switching the designations.

Table 3-1. Data Base for Local Variability Study

Site Site Distance Penetrometer
Location (ID) #1 #2 m (ft) (tons) Comments

Archer Landfill (ALFa) C029A C0298 3.7 (12.0) 10

Archer Landfill (ALFb) C029C C029D 4.6 (15.0) 10

Fort Myers (FMYER) C010D C010E 2.9 (9.5) 5/10 qc only

Sarasota Condo (SCNDO) CO08A CO08B 2.4 (8.0) 15

Sarasota Garage (SGARa) C006C CO06D 1.8 (6.0) 15

Sarasota Garage (SGARb) CO07A CO07B 2.1 (7.0) 15

Sarasota Garage (SGARc) C007C CO07D 2.6 (8.5) 15 qc only

Figure 3-2, representing 1287 observations, shows the cone

resistance data plotted about the expected 1:1 line. Most of the data

are relatively well-behaved about the line. Figure 3-3 shows a similar

plot for the friction resistance data, representing 809 observations.

Data Filter

As can be observed in Figure 3-1, many of the large-magnitude

"errors" between Soundings #1 and #2 are due to mismatches in the high-
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frequency (and often high-amplitude) peaks characteristic of some soils,

especially stiffer ones. These mismatches result in some of the large

magnitude scatter observed in Figures 3-2 and 3-3. To reduce the

influence of this high-frequency "noise" in the spatial variability

study, a digital filter was sought.

Several typical digital filters were tested on sample data sets,

including moving average and nonrecursive filters employing parabolic

fits (24). However, either inadequate smoothing of the data occurred,

or sudden shifts in the data were anticipated too early. The adopted

filter used a simple average method. The data were divided into 0.5-

meter (1.6-foot) increments, the average value of the increment

determined, and this value assigned to the midpoint of the increment.

This filter was able to smooth out the high-frequency noise in a

sounding, while preserving the essence of the sounding. Figure 3-4

shows one of the soundings from Figure 3-1 before and after filtering.

Figures 3-5 and 3-6 are identical to Figures 3-2 and 3-3, except

that the data have now been filtered. Note that the scatter has been

reduced. The number of data points has also been reduced by a factor of

10 as a result of filtering. In computer-intensive applications where

the point-to-point soil properties are not critical, such a filter can

greatly reduce computer processing time and storage requirements, while,

to a point, still reflect the influence of the entire (unfiltered) data

set.

Evaluation of Data Scatter

To evaluate the data scatter, regression analysis using the REG

procedure of the SAS system was used. The models used in the analysis

were
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(qc)1 = bo + b1(qc)2  ............................................. (3-1)

(fs)1 = bo + b1(fs) 2  ............................................. (3-2)

Besides calculating a slope and intercept using the ordinary least

squares approach, the REG procedure also calculates the root mean square

error of the model, or RMSE:

(Z - Z )2'

RMSE = A P. .......................................... (3-3)

in which n is the number of observations, Z is the soil property being

measured (either qc or fs), and the subscripts A and P refer to actual

and predicted values of the soil property, respectively. This RMSE is

an unbiased estimate of the standard deviation of the errors about the

regression line (9,16).

Table 3-2. Results of Local Variability Study

Parameter
(units) Filter b0  b, RMSE

Cone Resistance No 1.77 0.80 3.44
(MPa)

Yes 1.41 0.83 2.91

Friction Resistance No 3.79 1.03 31.1
(kPa)

Yes 0.46 1.10 23.9

From Table 3-2 one can see that using the average-value data filter

reduced the root mean square error by approximately 15% for qc, and over

23% for fs" Thus the use of the filter appears Jesirable, especially

when one is primarily interested in the most likely value of the soil

property in question.
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Based on the results of this study as summarized in Table 3-2,

reasonably conservative values for the local standard deviation of

friction-cone penetrometer measurements are estimated to be 3.0 MPa for

qc, and 24 kPa for fs. Figures 3-7 and 3-8 plot the residuals from the

regression analysis (Actual minus Predicted) as a function of the

independent variable for qc and fs, respectively. Only the lower-

magnitude values of the data are shown in the figures for amplification.

Note that at very low values of qc and fs the variability is lower,

increasing with increasing values of the soil property. It is proposed

that the following standard deviation be adopted for the spatial

'variability study, as shown on Figures 3-7 and 3-8:

local standard deviation (qc) = O.5(qc) for qc < 6.0 MPa (62.7 tsf)

= 3.0 MPa (31.4 tsf) for qc > 6.0 MPa

local standard deviation (fs) = 0.5(fs) for fs 48 kPa (0.50 tsf)

= 24 kPa (0.25 tsf) for fs > 48 kPa

The local standard deviation can be interpreted as the minimum

precision one can expect from the cone penetrometer measurements used in

the spatial variability study. It may be argued that the variability

measured in the local variability study was in reality true spatial

variability. However this author contends that any variability measured

over a horizontal span of less than 4.6 meters (15 feet) in what appear

to be nearly identical soils is for most practical applications a

"local" phenomenon, and can be treated as such.
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CHAPTER 4

DESCRIBING THE SPATIAL VARIABILITY OF SOILS

Introduction

Because of the way it is formed, even nominally homogeneous soil

layers can exhibit considerable variation in properties from one point

to another. This variation is termed spatial variability. Depending on

the factors involved in soil formation (source material, transport

mechanisms, etc.) and their fluctuations over both time and space, the

spatial variability may be large or small. Lumb notes this variability

in soil properties tends to be random, although general trends may exist

both vertically and horizontally (30).

The evaluation of soil variability is important because soil

properties must be estimated from a limited number of in situ and

laboratory tests. When soil properties are estimated at an unobserved

location, the engineer needs to have confidence that his estimates are

likely to be representative of the actual soil properties at that

location, or at least be able to quantify his confidence in the

estimates.

In evaluating soil variability, modern statistics and data analysis

offer several tools to help achieve these goals. The purpose of this

phase of the research is to evaluate these tools, and to develop a

field-usable methodology for describing the spatial variability of

Florida soils. A word of caution is in order, however. In applying

these tools one is reminded of Ralph Peck's admonition that subsurface

52
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engineering is an art--"...every interpretation of the results of a test

boring and every interpolation between two borings is an exercise in

geology. If carried out without regard to geologic principles the

results may be erroneous or even ridiculous" (37, p.62). Fortunately

most of Florida's soils are depositional due to their marine origin,

somewhat simplifying the geology and aiding interpolation.

Descriptive Statistics for Spatial Variability

Summarizing a Data Set

Traditionally, a deterministic, or single-valued approach is used

in describing soil properties. The most commonly used approach to

quantify a measured property, x, of a nominally homogeneous soil layer

is to use the average or mean value, R, of the property:

n
E x

x i= l i .................................................. (4-1 )

n

in which xi is the measured value of the property at point i, and n is

the total number of measurements. This estimator is the best choice for

summarizing data if the data are normally distributed. However, this

measure is sensitive to nonnormal distributions and to outliers, which

are unusually high or low data points that stand out from the rest due

to mistakes or other reasons.

An alternative to the mean for describing the center of a

distribution is the median, defined as the middle value of a data set

ordered from smallest to largest value. The -edian is robust against
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outliers, and can do a better job of summarizing nonnormal

distributions.

Siegel (54) offers a compromise between the mean and median for

describing a set of data, called the trimmed average. This statistic

removes the extremes from a distribution, and averages the remaining

data. For example, a 10% trimmed average would remove 10% of the

highest values, and 10% of the lowest (rounding down when the sample

size is not evenly divisible by 10), and then take the mean of the

remaining 80% of the data.

Describing Variability

The uncertainty in the mean of a data set is described by its

variance, V, or the square root of the variance, termed the standard

deviation, s:

V = X ................................................ (4-2)

s = V .......... ............................................... (4-3)

For normally distributed data, approximately 68% of the data should lie

within one standard deviation of the mean, and 95% within two standard

deviations. As is true of the mean, the variance and standard deviation

are sensitive to outliers and nonnormal distributions.

If the variance is comprised of contributions from different,

uncorrelated sources (such as from spatial variability, measurement

error, signal noise, etc.), then the total variance is equal to the sum

of the individual variances (3,26,57,63):

VT = VI + V2 +. . Vn .......................................... (4-4)
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A more robust measure of variability, related to the median, is the

interquartile range. If the data are ordered from smallest to largest,

the lower quartile is the 25% value (one-fourth of the data is less than

or equal to the lower quartile), the median is the 50% value, and the

upper quartile is the 75% value. Therefore

interquartile range = upper quartile - lower quartile ............ (4-5)

Using tables for the area beneath a normal distribution, for normally

distributed data the standard deviation and interquartile range can be

related by

interquartile range = 1.46 s . .................................... (4-6)

If we have a random sample from a normally distributed population,

we can determine a confidence interval on the mean of the sample using

the following:

t s
interval = x ± n-l ..... ................................... (4-7)

in which tn I is called the t-value. Given the desired confidence level

and the number of degrees of freedom (equal to n-i), the t-value can be

obtained from standard statistical tables. Figure 4-1 shows the t-value

for selected two-sided confidence intervals.

Measuring Association

If Z is a function of two variables x and y, then the strength of

association between the two variables is usually measured by their

correlation coefficient, r:
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S[x - T)(y - 7)]
r(Z) = r(x,y) i .................. (4-8)

/[E(x _i)2][E(y _ 7)2],
¢ i i

The correlation coefficient ranges between +1 and -1, with +1 indicating

perfect 1:1 correlation, 0 indicating no correlation, and -1 indicating

perfect inverse correlation (i.e., as one variable increases, the other

decreases proportionally). For interpreting other values of the

correlation coefficient, Smith (55) suggests the following guide:

Ir > 0.8 Strong correlation, assume complete dependence

0.8 > Iro 0.2 Moderate correlation

0.2 > Irl Weak correlation, assume complete independence

Siegel (54) suggests minimum values of the correlation coefficient for

testing that a significant association exists, given the sample size and

level of confidence desired. The data must represent a random sample of the

population and must be bivariate normal, meaning the two variables come

from normal distributions and plot linearly (x versus y) except for

randomness. These requirements rule out outliers and nonlinear data

sets. Figure 4-2 is a plot of the critical r values for a 90%

confidence level.

The association between the uncertainty of two variables, x and y,

is usually described by their covariance, C:

C(x,y) = E n (x - )(y - 7)] .................. (4-9)
n -. Ii=l i

Note that when x=y, then the covariance equals the variance (i.e., the
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diagonal terms in a covariance matrix are the variances, V). It can

also be shown that the covariance, correlation coefficient, and standard

deviation are related by

C(x.y)
r(x,y ) = s s ............................................... (4-10)

xy

Estimation Models

Traditional Choices

When faced with the need for determining a soil property for input

into a design process, the conventional or deterministic approach is to

assume a homogeneous soil (or soil layer), described by some "average"

value for the soil property. This single-value approach is appealing

due to the simpler mathematics involved. If a measure of the soil's

variability is also desired, the standard deviation of the measured

property and perhaps a confidence interval are the usual choices.

Often, however, the variability of measured soil properties is so

great that a simple "average" could result in needlessly conservative or

dangerously nonconservative design. Thus explicit consideration of the

spatial variability of soil is required. A model is needed which can

predict a soil property at a point i, based on measurements of the

property at n other points.

Some of the most commonly used estimation techniques seek to

interpolate between measured points by fitting linear and higher order

regression models to the data using the well-known least squares curve

fitting techniques (17,26,46,58). Distance weighting functions, such as

a/d and a/d2 (where d is the distance between the measured point and the
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point to be estimated, and a is a suitably chosen parameter) are also

often used to estimate soil parameters. Regarding the use of these

models for estimating properties used in the mining industry, Rutledge

criticizes these procedures as being "quite arbitrary and without a

sound theoretical basis. The so-called 'principle of gradual change'

and the 'rule of nearest points' are an appeal to mysticism, not

science" (46, p.300). Rutledge's objections notwithstanding, these

methods have been successfully used for many years in designing and

constructing innumerable civil structures.

Random Field Models

In response to the need for an estimation model based at least in

part on theoretical principles, numerous researchers have acknowledged

the stochastic nature of soil by employing random field models to

estirnate soil properties (3,5,10,12,26,27,28,30,46,58,59,60,63).

Generally, these models are two-part models consisting of a

non. tationary and a stationary portion. The nonstationary, or trending

por'ion of the model is generally described by conventional regression

ana'ysis. The random field models are used for the stationary, or

sto-hastic portion (i.e., the residuals from the regression analysis).

The stationary portion or the mode' attempts to improve the soil

property prediction from the regression analysis (the nonstationary

portion) by considering any correlation structure within the residuals.

This correlation structure (more properly termed autocorrelation)

results from the fact that nearby soil volumes tend to have similar

residuals from the regression analysis (i.e., adjacent soil volumes

would both tend to be above or below the prediction from regression,



60

whereas more distant soil volumes would more likely follow the expected

random variation about the regression prediction).

Figure 4-3 describes the Random Field Model concept. While the

straight line (determined from regression analysis) predicts the general

trend of the data, knowledge of Points #1 and #2--which are correlated

with one another--would permit a better prediction of Point #3, thus

enhancing the prediction from the regression model.

Figure 4-3. Random Field Model ioncept

Reqression analysis. In using the ordinary least squares (OLS)

approach to regression analysis, the model used is typically

[Z] = [X][b] + [e] ............................................... (4-11 )

in which

[Z] = (n x 1) column vector of n observations of the dependent variable Z

[X] = (n x p) matrix comprised of l's in the first column to represent the

intercept term b, (i.e., X, = 1), and of the n observations on

(p - 1) independent variables X2 ,...,X p
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[b] = (p x 1) column vector of unknown weights to be determined: b, (the

intercept term), b2,...,b p

[e] is an (n x 1) column vector of n residuals, ei

Several key assumptions are made relative to the residual terms in

applying the OLS method to regression analysis, namely that they have

zero mean, are uncorrelated, have constant variance, and are normally

distributed (14). These assumptions are often represented by

e = N(O,V) ..................................................... (4-12a)

E[C(ei,ej)] = 0 for i j ....... ........................... (4-12b)

'in which E[ ] is the expected value of [ ].

As introduced above, though soil is typically considered a random

media, soil properties for neighboring soil volumes tend to be more

correlated than the properties for more distant volumes, causing the

covariance assumption (Equation 4-12b) to be violated for some i j.

This feature is termed autocorrelation. The random field models attempt

to improve soil property estimation by accounting for the

autocorrelation structure of the residuals.

Autocorrelation structure. Autocorrelation structure is often

described by a semi-variogram (Figure 4-4), which is a graph showing the

degree of continuity of a soil property (26,33,40). By graphing the

semi-variogram function,Y (r), against separation or lag distance, r,

the semi-variogram provides information on how far data may be spatially

extrapolated (4). The theoretical semi-variogram function is equal to

y(r) = 0.5 V [Z(x + r) - Z(x)] .............................. (4-13)
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Figure 4-4. Typical Experimental Semi-Variogram of Normalized Data

in which Z(x) is the value of property Z at point x and V[] is the

variance. For random residuals this function will level off to a

constant value (the variance of the data set) at r greater than a

distance termed the range of the variogram. For finite data sets,

Equation 4-13 is estimated by

N(r)
'((r) = Z [Z(x + r) - Z(x )]2...................... (4-14)

2N(r) i=l i i

in which N(r) is the number of observation pairs whose separation

distance is r. In working with real data spaced at less than uniform

intervals, a band or tolerance is often applied to the separation

distance (i.e., r = 50 feet + 10 feet). Tang (59) cautions that the

error in the estimated variogram can be substantial if r varies
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significantly from the discretized average distance. Also, the

reliability of the estimate for Y(r) decreases with increasing r, so

usually only separation distance values up to one-fourth to one-half the

total distance spanned are used in the analysis (26,28).

Vanmarcke (63) notes that statistical analysis of actual soil data

can often be handled easier if the soil is normalized to be

"statistically homogeneous," producing what Lumb calls a "grossly

uniform soil" (31). Data can be normalized to have a mean of zero and a

standard deviation (and variance) of unity by the following

transformation:

x = x - x ..................................................... (4-15)
n s

x

where xn is the normalized data corresponding to x. For normalized

random data, the semi-variogram function should level off to a value of

one.

Given a data set of normalized residuals, the autocorrelation

function, P(r), is complementary to the semi-variogram function, and can

be determined by

p(r ) = 1 - y (r ) ............................................... (4-16)

Similar to the correlation coefficient, P(r) can vary between I (perfect

continuity of the soil property) and 0 (completely random variation).

However, as a measure of association between data pairs, the correlation

function may seem more familiar to engineers than the semi-variogram

function, whose origin lies in mining geology. Figure 4-5 shows the

correlation function corresponding to Figure 4-4, and fitted by an
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exponential expression from Vanmarcke (63). Vanmarcke presents four

analytical expressions of many in the literature describing the

correlation function, each characterized by a single parameter. He

notes that all of the formulas are merely curve fitting expressions with

no theoretical basis; hence, they all "work" about equally well--a

practical point of view echoed by Tang (59).

The correlation function (or the related semi-variogram) is used to

account for autocorrelation structure in regression analysis, as

described below. It is also a powerful device for estimating the

maximum spacing between samples. In order to characterize the

autocorrelation structure of a site (and, hence, the spatial variability

of the measured soil property), Peters (40) states the maximum spacing

between samples is the range of the variogram (or correlation function),
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with a recommended spacing of two-thirds to three-quarters of the range.

A larger spacing would likely miss the correlation structure, and a

smaller spacing would be unnecessarily expensive. Naturally, closely-

spaced trial samples in the area would be initially required to

establish the correlation structure of the soil property. Kulatilake

and Miller note that if the purpose of a site investigation is to

generally characterize the site while avoiding redundancy (i.e., to

describe the general trend of the site), then sample spacing should be

greater than the range (27).

Incorporation into model. If the nonstationary portion of the

regression model is designated Z*, and the stationary portion Z**, then

the complete model is

Z(xi) = Z*(xi) + Z**(xi) ........................................ (4-17)

in which Z(xi) is the estimated value of the soil property, Z, at point

xi. The nonstationary portion is estimated using conventional

regression techniques. The stationary portion is estimated using a

method presented by Kulatilake and Ghosh (26).

One of the difficulties in applying a random field model is testing

for stationarity of the data. Normally replicate testing techniques can

be used to insure that the residuals are N(O,V) beyond the range of the

semi-variogram; but with destructive tests such as the CPT and SPT,

alternate methods are required. Kulatilake and Ghosh proposed examining

the form of the semi-variogram at large lag distances. If the

normalized semi-variogram function levels off to I (or the complementary

autocorrelation function to 0), then stationarity can be assumed.

However, if leveling-off behavior is not exhibited, then a trend
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component is apparently remaining in the residuals, and a higher order

regression model should be used. They recommend using the lowest order

trend (nonstationary) model that results in a satisfactory semi-

variogram.

In quantifying the stationary portion of the estimation model,

Kulatilake and Ghosh employed an approach related to the geostatistical

procedure called kriging. Briefly, kriging is a computer-intensive

process used to estimate the value of an unknown, autocorrelated

property using a linear weighting function. The weights are chosen

subject two conditions: the sum of the weights must equal 1, and the

sampling variance should be minimized (4,6,10,12,33). Z**(xi) was thus

estimated by

** q
Z (x ) (s ) E a h . ..... ................................. (4-17)

i e k=l ki k

a = ki ; j = 1,2,.............................(4-18)
ki Ep

ji
in which

q = the number of measurements within the correlated region

around xi

se = the standard deviation of the residuals from lowest order

regression model resulting in stationary autocorrelation

function

hk = the normalized residual at location k within the correlated

region about point i

aki = a suitable weighting coefficient, and
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P m value of the correlation function for a separation distance
mn

corresponding to the distance between points m and n



CHAPTER 5

EVALUATION OF THE SPATIAL VARIABILITY MODELS

Application of Estimation Models

Five general models for predicting soil properties influenced by

spatial variability were evaluated at three sites, as discussed below.

In all cases the approach taken was to attempt to predict a sounding

(whether it be an SPT or CPT sounding) by suppressing that sounding from

the data base, and using the remaining soundings for the prediction.

The three sites selected were Choctawhatchee Bay (CPTs), Apalachicola

River (SPTs), and Archer Landfill (CPTs).

Evaluation Criteria

The root mean square error, RMSE, was used as a criterion to

evaluate the accuracy of the various models. The model to predict a

soil property, Z, which minimizes the RMSE can likely be judged the best

of the evaluated models:

n
E (Z - 7 )2

RMSE j=l A P j ......................................... (5-1 )

n

in which n is the number of observations, and the subscripts A and P

refer to actual and predicted values of the soil property, respectively.

The RMSE is an estimate of the standard deviation of the errors about

the prediction; however it is not a true unbiased estimate (as was used

68
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in Chapter 3 to evaluate the local variability of cone penetration test

measurements) because the denominator equals the total number of

observations, not the number of independent observations. This slightly

revised definition of the root mean square error is deliberate to permit

true comparison between all of the prediction methods--the affect on the

value of the RMSE will be negligible due to the large number of

observations involved.

In addition to the RMSE criterion, the predictions were graphically

overlaid onto the actual soundings and subjectively compared. This was

an important check on the root mean square error to insure that the best

RMSE did indeed reflect the best prediction.

Data Manipulation

For the Choctawhatchee Bay and Apalachicola River sites, the five

general models were applied to both transformed and nontransformed

variables. Only transformed variables were used at the Archer Landfill

site. The transformation used was logarithmic (base 10), which has the

effect of spreading out small values of the variable while bringing in

large values. This was judged potentially beneficial for the Florida

data sets used in this analysis because of the relatively large

percentage of small values of the variables (whether they be qc, fs, or

N), and the large-valued spikes in some of the soundings. It was felt

that such a transformation may emphasize the smaller values of the

variables, giving a somewhat more conservative estimate. Another

potential advantage of the logarithmic transformation was the

eiimiation of any negative predictions, an occasional problem with the

regression models. Figure 5-1 compares a typical frequency distribution
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GC MIDPOINT FREQ. PCT. PCT.

0.0 889 14.46 14.48

1.5 996 20.90 35.38
3.0 550 13.85 49.21

45 582 11.79 81.01
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7.5 318 5.87 78.26

9.0 249 5.23 81.49

10.5 172 3.81 85.10

12.0 105 2.20 87.30

13.5 77 1.82 88.92

15.0 98 2.01 90.93

15.5 90 1.89 92.82

18.0 63 1.32 94.14

19.5 48 1.0t 95.15

21.0 47 0.99 96.14

22.5 35 0.73 95.87

24.0 38 0.76 97.63

25.5 34 0.71 98.34

27.0 18 0.34 98.68

29.5 19 0.40 99.08
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Figure 5-1. Effect of Data Transformation on Cone Resistance Data
at Choctawhatchee Bay Site
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of a variable with its associated transformation. While neither

distribution is statistically "normal," the transformed variable is much

more symmetrical, suggesting that deterministic estimates of the

distribution (i.e., the mean and median) may be more representative of

the entire data set.

In addition to the logarithmic transformations, the cone

penetration test data were filtered using the average value over a 0.5

meter increment. As discussed in Chapter 3, this digital filter

smoothes out the high-frequency noise seen in many CPT soundings, while

preserving the true character of the sounding. As a result the RMSE

will be reduced, and will better reflect the standard deviation in the

average value of the estimate.

Autocorrelation Function

As suggested by Anderson et al., the autocorrelation function was

estimated for each site by considering the measured soil property values

along lines of constant elevation, and pooling vertically (3). The

lowest order regression model which demonstrated stationary residuals

(using Kulatilake and Ghosh's approach) was used to remove the trend

component. Then an equation was fitted to the autocorrelation function

exhibited by the residuals. Appendix E contains two BASIC programs for

calculating the autocorrelation function: one assuming the soundings are

equally spaced, the other assuming irregular spacing.

As mentioned above, the autocorrelation function permits rational

evaluation of the spacing of soundings during a geotechnical site

investigation. Also, two of the estimation models employed in this

study make use of the information obtained from the autocorrelation
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function; specifically the range or correlated distance, and the fitted

autocorrelation function. As noted earlier, since the exact form of

this equation is of little real significance and has no theoretical

basis, a simple exponential form was used for each site:

-rib

p (r ) = e .................................................... (5-2)

in which r is the lag or separation distance, and 8is the constant

which causes the function to best fit the actual data. The range of the

autocorrelation function is the distance at which the data become

uncorrelated. For the purposes of this research project, data were

assumed uncorrelated when the correlation coefficient was approximately

0.1 or less.

Model Types

Deterministic. A constant value was used to represent the soil for

the whole depth. Three deterministic models were evaluated: the mean,

the median, and the 10% trimmed average of the entire data set.

Distance Weighting. Two distance weighting functions were applied

to soundings within the range of the sounding to be predicted. The

first used al/d for the weighting function, whereas the second function

2used a2/d , where d is the horizontal distance from the sounding in the

data base to the sounding to be predicted. The "an" terms were

determined so that the sum of the weighting functions equaled 1:

n
ii d

a i= l i........................................... (5-3)

n n
Z [ d /(d )]

i=l i=l i i
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n
TI d 2

a = i=I i .......................................... (5-4)
2 n n

E IT d 2 /(d 2 )]
i=l i=l i i

in which di is the distance to sounding i of n total soundings within

the range about the sounding to be predicted. If individual

observations of a particular sounding were missing for some reason, then

the weights were recalculated using the remaining soundings within the

correlated region.

Regression Analysis. The third general model evaluated was

regression analysis, which fits the "best" curve through the given data

by minimizing the squared distance between the curve and the data points

using the method of least squares. The adequacy of the model fit is

usually summarized using the squared multiple correlation coefficient,

R2:

R 2 = 1A - p .......................................... (5-5)

Z(z - )
A

in which the subscripts A and P refer to actual and predicted soil

property values. The R2 value represents the proportion of the total

variability in the dependent variable that can be explained by the

regression model, and can vary between 0 (no fit) to 1 (perfect fit).

As a rule of thumb, Brook and Arnold recommend an R2 of at least 0.5 in

order to have much confidence in the model (9).

Several levels of regression analysis were used. The lowest level,

termed Model 1, was a simple first order (linear) model:
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P = b0 + bjX + b2Y + b3Z + e . (5-6)

in which P is the predicted value, X and Y are perpendicular horizontal

distances, and Z is the vertical depth from some selected reference

point. Model 2 was similar to Model I, except that a second order depth

term was added:

P = b0  + biX + b2Y + b3Z + b4Z
2  + e .............................. (5-7)

The remaining two levels of regression analysis are termed "Low

Term Regression" and "High Term Regression," terminology which requires

some explanation. To better describe observed trends in the data set,

higher order variables are often required. However, part of the

difficulty in applying regression analysis to a problem is determining

which variables are important and significant in describing the trends.

A stepwise variable selection technique, contained in the SAS procedure

STEPWISE, was employed for selection of significant higher-order

regression variables.

The stepwise technique is a well-regarded variable selection

method, the details of which can be found in many texts on regression or

multivariate analysis (14,16,48,56). Briefly, the stepwise procedure

enters and removes predictors one by one until some "best" regression

equation is found. The method starts out by entering the variable most

highly correlated with the dependent variable (i.e., the predictor

having the largest squared correlation coefficient--squared to allow for

significant negative correlations). Succeeding variables are added at

each step according to the largest F-value, a statistic which measures

whether a variable's contribution to the model was significant, or could

be explained by chance. A significance level of 0.15 was used to admit

| | • • |J
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predictor variables to the model (meaning there was at most a 15% chance

that the variable's contribution was due to chance). After a variable

is admitted to the model, all previously admitted variables are then

checked for possible removal by calculating their F-values, assuming

that they were the last variable admitted to the model. This test

eliminates predictors that may be highly correlated with subsequently

entered predictors. A significance level of 0.15 was also used to

remove variables. The stepwise procedure continues until all variables

meeting the required F-value are entered into the model.

Lumb (30) and Tabba and Yong (58) note that horizontal trends can

generally be described using first or second order variables, whereas

depth variables often must be of much higher order. Therefore the

variables selected for evaluation by the STEPWISE procedure were depth

up to order 8, horizontal distance up to order 2, and depth-distance

interaction terms up to order 5 for depth and order 2 for distance.

After the STEPWISE procedure completed its analysis, the "High Term

Regression Model" was the final step in the procedure, and represented

the best model (as measured by the R2 statistic) containing all

predictor variables significant at the 0.15 level. The "Low Term

Regression Model" was a model from one of the earlier steps in the

STEPWISE procedure with an R2 statistic nearly as large as the High Term

Model (i.e., subsequent steps reflected the Law of Diminishing Returns

in improvement of the model fit).

Random Field. The fourth type of model evaluated for predicting

soil properties is the random field model. The nonstationary, or trend

portion of the model is the lowest order regression equation exhibiting

stationary residuals, as determined during evaluation of the
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autocorrelation function. The stationary, or random portion employs

Equations 4-17 and 4-18, using the equation for the fitted

autocorrelation function determined above. A BASIC program for

calculating the stationary portion of the model is contained in Appendix

E.

Linear Interpolation. The final general model evaluated in this

study was a simple linear interpolation model. For this model, the

sounding to be predicted was linearly interpolated from the immediately

adjacent soundings, based on separation distance. This model provides

an important comparison for the more "sophisticated" attempts to improve

on a single-value (deterministic) estimate, because it is the method

most likely to be employed by an engineer.

Sites Investigated

Choctawhatchee Bay. The first site evaluated was a portion of a

replacement bridge being bui.lt by the Florida Department of

Transportation (FDOT) across Choctawhatchee Bay in the Florida

panhandle. Twelve friction-cone penetrometer soundings were used,

running generally south to north between Stations 110+88 (Sounding A)

and 119+47 (Sounding L) on the causeway south of the main channel, a

distance of 859 feet. Figure 5-2 shows a plan view of the site. For

purposes of evaluating their spatial variability, the twelve soundings

were assumed on a straight line (reducing the problem to a two-

dimensional problem), except that the autocorrelation function was

calculated based on true separation distances. Three soundings were

"predicted," located at Stations 114+78 (Sounding E), 117+00 (Sounding

H), and 119+00 (Sounding J).
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The spatial variability analysis was based on the upper 20 meters

of soil. The surface elevation was nearly level at approximately 1.8 m

MSL (6.0 ft MSL), with a range of 1.6 m to 2.1 m (5.4 ft to 7.0 ft).

The soil is predominantly fine sand and silty sand, with some sandy clay

layers.

The ECPT soundings show the site, in general, to have low to

moderate qc values to a depth of 5-7 meters (16-23 feet), followed by

very low qc's. Between 11 and 14 meters (36-46 feet) the cone

resistance increases somewhat, becoming moderate to high at depths

ranging from 13 to 17 meters (43-56 feet). The friction resistance

values remained low throughout the soundings, increasing modestly when

the stiffer sand layer was encountered. A subjective evaluation of the

site would describe it as reasonably uniform, sounding to sounding.

Figure 5-3 is the autocorrelation function for the raw data (normalized

using equation 4-15). Autocorrelation was assumed to be a circular

function in the horizontal plane (i.e., autocorrelation in the x-

direction = autocorrelation in the y-direction). Figure 5-3 supports

the subjective description of "reasonably uniform" since it generally

leveled off to an average correlation coefficient of around 0.5 to 0.6

for at least 122 meters (400 feet) laterally.

Several of the soundings recorded negative friction values in very

weak soils, a problem discussed in Chapter 3. Friction resistance

values less than -10 kPa (-105 tsf) were deleted from the data base; all

other negative friction values were forced to zero (Note: These values

were forced to 1 kPa for the transformed fs).

Apalacicola River. The second site evaluated for spatial

variability was another FDOT bridge project across the Apalachicola
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River. Thirteen standard penetration test (SPT) soundings were used,

running on a line east to west between Stations 105+00 (Boring 10) and

124+00 (Boring 22) within the boundaries of the Apalachicola River.

Figure 5-4 shows a plan view of the site. Three soundings were

"predicted," located at Stations 106+00 (Boring 11), 114+00 (Boring 9),

and 118+00 (Boring 13).

The spatial variability analysis was based on the SPT soundings

between elevation -9.1 and -27.4 meters (-30 and -90 feet) MSL. To

facilitate the analysis, the individual soundings were slightly adjusted

up or down so that the SPT N values (with units of blows per foot)

occurred at the same elevation for all soundings. The decision to limit

the analysis to elevations between -9.1 and -27.4 meters was due to

1. The SPT measurements display nearly perfect uniformity from the
mud line to elevation -9.1 m (with an N=1-2), and hence show
virtually no detectable spatial variability; and

2. Data are sparse below elevation -27.4 m.

To minimize any undue effect of individual large data values on the

analysis, all N values in excess of 150 (such as 50 blows per 3 inches,

equivalent to 200 blows per foot) were truncated to 150 blows per foot.

This was the only filtering performed on the Apalachicola River ddta

set.

The soil profile is typically loose clayey sand overlying stiff

clay, which overlies dense sand. The SPT soundings show the sita, in

general, to have low N values between elevation -9.1 and -27.4 meters (-

30 and -13.7 feet). Between elevation -13.7 and -27.4 meters (-45 and

90 feet), however, the N values range widely. Adjacent soundings tended

to have somewhat similar profiles, but large differences were not
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uncommon. Figure 5-5 shows the autocorrelation function for the raw SPT

data. Note the generally decreasing correlation coefficient up to a lag

distance of 500 feet (152 m). The correlation seems to improve slightly

beyond 500 feet, but since autocorrelation functions are known to be

less reliable at larger lag distances, this improvement is thought to be

an artifact of the particular data set.

Archer Landfill. The final site evaluated for spatial variability

was a future landfill located west of Archer, Florida. Ten electronic

cone penetrometer soundings were used, spread out over approximately 0.7

hectares (1.7 acres). Figure 5-6 shows a plan view of the site. For

this analysis, the data were located three-dimensionally since the

soundings were not in a relatively straight line. Soundings #4, #5, and

#8 were "predicted." The source of the data was a University of Florida

Master's degree thesis by Basnett (7).

The spatial variability analysis was based on the ECPT soundings

between elevations 20 and 30 meters (66-98 feet) (data were sparse below

elevation 20 meters). The surface elevation averaged 31.85 meters MSL

(104.5 ft MSL), with a range of 30.60 to 32.85 meters (100.4 to 107.8

ft). The soil is described as medium to fine-grained quartz sand. No

water table was encountered.

The ECPT soundings show the site to have cone resistance and

friction resistance values that generally increase with depth. The site

is remarkably uniform, although measured stresses are somewhat more

variable for the lower five meters (16 ft) of the sounding. Figure 5-7

shows the autocorrelation function for the raw SPT data.

Autocorrelation was assumed to be a circular function in the horizontal

plane. The uniformity of the site is reflected by the leveling off of
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the correlation coefficients to values generally over 0.6 as far as 300

feet (91.4 m) apart.

Results and Discussion

Choctawhatchee Bay Site

Autocorrelation Function. Since the autocorrelation function for

the noi'malized raw data did not level off to zero (Figure 5-3), a

nonstationary component was assumed to be present. Following Kulatilake

and Ghosh's recommended technique (26), a first order regression model

(Model 1) was used to try to describe the trend. However, the

autocorrelation function for the residuals from the regression analysis

showed little change from Figure 5-3. Again increasing the order of the

regression model one step (Model 2), the autocorrelation function began

to approach the expected leveling-off behavior. In order to better

describe the trend component, the STEPWISE model generator in the SAS

system was employed. A four-term model was selected for both qc and fs:

qc = bo + biD + b2D2 + b3D8 + b4D5X R2 = 0.55 .............. (5-8)

fs = bo + biD 2 + b2X2 + b3DX + b4D5X R2 = 0.65 .............. (5-9)

in which D is the depth in meters, and X is the distance from Sounding A

in feet. This model produced the autocorrelation functions used in the

analysis (Figure 5-8):

By trial and error an exponential curve corresponding to equation

5-2 was fitted to both the cone resistance and friction resistance data

of Figure 5-8 (since the two curves were very similar). A constant (a)

of 20, and a range of 50 feet were estimated. The fact that the range
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is relatively small at a site that is considered well-correlated

suggests that the regression model may do a good job of describing the

site by itself. A result of the small range, however, is that there are

no soundings within 50 feet of Sounding H. Therefore, the weight

methods and the random field models were not applied to this sounding.

In similar fashion the autocorrelation functions for the

transformed variables were also determined. In this instance, a Model 2

regression was sufficient to remove the nonstationary portion of the

friction data, whereas the STEPWISE model generator was required for the

cone resistance data. The generated model was identical to Equation 5-8

above, except that D7 was used instead of D8 (R2 = 0.53). For both the

qc and fs autocorrelation functions, a B of 30 and a range of 80 feet

were estimated (Figure 5-9), which is (predictably) very similar to the

functions estimated using the nontransformed variables.

Estimation models. Table 5-I compares the parameters used for the

deterministic models, along with the parameters' standard deviations.

Note that the standard deviation for the median was estimated using

equations 4-5 and 4-6, and assuming the cone resistance and friction

resistance values are normally distributed. While this assumption is

not generally true (as was seen in Figure 5-1 which corpared transformed

and nontransformed frequency distributions), such an assumption permits

comparison with the mean and the trimmed average standard deviation

estimates, which also assume normality. Als, note that a range

encompassing approximately 68% of the data (± one standard deviation) is

given for the logarithmic variables, since the transformation tends to

skew the variable values and prohibits describing the "de-transformed"

standard deviation with a single number. The effect of the large
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outlier values for qc and fs can be seen in Table 5-1. The parameter

and standard deviation estimates using the mean (which accounts for all

values of the variable) is larger than for any of the other methods

(which in various ways tend to minimize the effects of extreme values).

Table 5-1. Deterministic Model Parameters for Choctawhatchee Bay Site

Deterministic Cone Resistance (MPa) Friction Resistance (kPa)
Model Type Estimate Std Dev Estimate Std Dev

Mean 5.89 6.04 22.3 29.8
Log Mean 3.33 1.11-10.01 8.6 2.0-38.1

Median 4.03 4.52 12.6 16.6
Log Median 3.93 1.17-13.18 11.2 1.7-74.5

Trimmed Average 4.72 3.33 15.9 15.0
Log Trimmed Average 3.36 1.47-7.66 8.4 2.5-28.3

Tables 5-2 and 5-3 summarize the regression analyses, including

their squared multiple correlation coefficients (R2), and the root mean

square errors (RMSE) for the regressions over the whole site (less the

sounding to be predicted). Appendix F summarizes the steps in the

STEPWISE procedure as well as the variables selected for the low term

and high term regression models.

Prediction results. Tables 5-4 and 5-5 summarize the root mean

square errors obtained by applying the various estimation models to

predict the three target soundings. Figures 5-10 and 5-11 graphically

summarize the information contained in Tables 5-4 and 5-5, respectively.

A study of Figures 5-10 and 5-11 show several items of interest.

The three single-value methods (mean, median and trimmed average) all

give approximately the same level of error. This level of error was

generally improved on in estimating the friction values using the more

"sophisticated" methods, but such improvement was less reliable in
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Table 5-2. Regression Models for the Prediction of Cone Resistance
at the Choctawhatchee Bay Site

Sounding Model Type R2  RMSE

E Model 1 0.11 5.81
Model 2 0.42 4.67
Low Term 0.46 4.54
High Term 0.54 4.19

Model 1 (Log) 0.05 0.46
Model 2 (Log) 0.41 0.36
Low Term (Log) 0.53 0.32
High Term (Log) 0.55 0.32

H Model 1 0.11 5.85
Model 2 0.45 4.61
Low Term 0.58 4.05
High Term 0.61 3.90

Model 1 (Log) 0.05 0.47
Model 2 (Log) 0.44 0.36
Low Term (Log) 0.57 0.32
High Term (Log) 0.66 0.29

J Model 1 0.08 5.75
Model 2 0.40 4.66
Low Term 0.42 4.58
High Term 0.50 4.24

Model 1 (Log) 0.03 0.47
Model 2 (Log) 0.40 0.37
Low Term (Log) 0.51 0.34
High Term (Log) 0.53 0.33

Note: The RMSE for the logarithmic approach was
left in its transformed state to preserve
its true value and meaning.
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Table 5-3. Regression Models for the Prediction of Friction Resistance
at the Choctawhatchee Bay Site

Sounding Model Type RMSE

E Model 1 0.25 26.2
Model 2 0.52 21.1
Low Term 0.63 18.5
High Term 0.67 17.6

Model I (Log) 0.17 0.58
Model 2 (Log) 0.40 0.49
Low Term (Log) 0.48 0.46
High Term (Log) 0.52 0.44

H Model 1 0.24 26.8
Model 2 0.53 21.1
Low Term 0.64 18.4
High Term 0.68 17.5
Model 1 (Log) 0.14 0.62
Model 2 (Log) 0.41 0.51

Low Term (Log) 0.48 0.48
High Term (Log) 0.54 0.46

J Model 1 0.23 26.2
Model 2 0.51 20.9
Low Term 0.65 17.7
High Term 0.66 17.4

Model 1 (Log) 0.13 0.59
Model 2 (Log) 0.39 0.50
Low Term (Log) 0.47 0.47
High Term (Log) 0.52 0.44

Note: The RMSE for the logarithmic approach was
left in its transformed state to preserve
its true value and meaning.
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Table 5-4. Results of qc Analysis at Choctawhatchee Bay

ROOT MEAN SQUARE ERROR (MPa)

METHOD E OH J LOG OE LOG OH LOG QJ

MEAN 4.89 3.75 6.59 4.85 3.28 7.19
MEDIAN 4.81 3.31 7.27 4.73 3.21 6.88
TRIMMED AVG 4.76 3.36 6.97 4.84 3.27 7.17

WEIGHT (a/d) 6.54 3.02 5.30 3.17
WEIGHT (a/d2) 6.46 3.17 5.71 3.30

REG MODEL 1 5.22 4.74 5.93 4.91 3.42 6.66
REG MODEL 2 3.44 4.38 3.61 3.47 3.78 4.28
REG LO TERM 3.75 5.12 3.07 3.59 5.25 2.97
REG HI TERM 3.48 5.34 2.70 3.57 2.91 3.58

RANDOM FIELD 6.33 3.08 4.80 2.77

LINEAR INTERP 6.32 6.64 2.92 5.95 6.22 2.73

NOTE: QE = qc at Station 114+78
QH = qc at Station 117+00
QJ = qc at Station 119+00

Table 5-5. Results of fs Analysis at Choctawhatchee Bay

ROOT MEAN SQUARE ERROR (kPa)

METHOD FE FH FJ LOG FE LOG FH LOG FJ

MEAN 23.6 17.8 30.1 26.1 19.0 31.0
MEDIAN 23.8 17.2 30.6 25.8 18.6 30.7
TRIMMED AVG 23.3 16.8 30.1 26.1 19.0 31.0

WEIGHT (a/d) 24.0 25.6 18.2 24.8
WEIGHT (a/d2) 23.7 25.7 20.2 25.0

REG MODEL 1 24.9 17.5 25.5 21.1 13.5 24.7
REG MODEL 2 16.6 15.6 18.7 16.0 10.5 14.9
REG LO TERM 15.8 14.9 18.9 17.8 13.0 19.1
REG HI TERM 16.5 16.8 18.1 17.4 16.4 13.3

RANDOM FIELD 23.4 24.9 16.3 24.6

LINEAR INTERP 23.2 20.7 21.1 21.5 19.9 17.9

NOTE: FE = fs at Station 114+78
FH = fs at Station 117+00
FJ =fs at Station 119+00
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estimating conr resistance. Note also the usually small differences

between the various distance-weighting methods (the two weight methods,

the random field model, and the linear interpolation method).

Apparently no method of assigning weights is consistently superior.

Of particular interest is the performance of the higher order

regression models (Model 2, Low Term and High Term). These models were

the most consistent estimators, producing relatively good RMSE's with

less scatter than the other methods evaluated. The range of

approximately 3-5 MPa for the qc RMSE compares well with the expected

RMSE's of approximately 4-5 MPa from Table 5-2. Similarly, the fs range

of 15-19 kPa compares well with Table 5-3's range of approximately 17-21

kPa.

Table 5-6, which is based on the data in Tables 5-4 and 5-5, is

useful for evaluating the effects of using the logarithmic

transformation on the data. In this table, positive values indicate a

higher error using the nontransformed data set, whereas negative values

indicate the opposite. While the nontransformed single-value estimates

seem to be superior, on average the logarithmic transformation appears

to improve (albeit slightly) the predictions.

Despite the appeal of a single number (the RMSE) to evaluate and

compare the various prediction methods, an inspection of plots of the

actual predictions is necessary to completely compare one method against

another. Figures 5-12 through 5-14 show some typical prediction plots

using several of the estimation models.

Figure 5-12 shows the weighting prediction (using a/d) for fs at

Sounding J. This plot is virtually indistinguishable from any of the

other weighting or interpolation methods (whether employing transformed
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Table 5-6. Comparison of Transformed and Nontransformed Approaches
at Choctawhatchee Bay

RMSE(REGULAR) -'RMSE(LOG)

(a) CONE RESISTANCE (MPa)

METHOD E H U 0 AVG

MEAN 0.04 0.48 -0.60 -0.03
MEDIAN 0.08 0.09 0.39 0.19
TRIMMED AVG -0.08 0.09 -0.20 -0.07

WEIGHT (a/d) 1.24 -0.15 0.55
WEIGHT (a/d2) 0.75 -0.13 0.31

REG MODEL 1 0.31 1.31 -0.73 0.30
REG MODEL 2 -0.03 0.60 -0.67 -0.04
REG LO TERM 0.15 -0.13 0.10 0.04
REG HI TERM -0.09 2.43 -0.88 0.49

RANDOM FIELD 1.53 0.31 0.92

LINEAR INTERP 0.38 0.42 0.19 0.33

(b) FRICTION RESISTANCE (kPa)

METHOD FE FH FJ F AVG

MEAN -2.4 -1.2 -0.9 -1.5
MEDIAN -2.0 -1.4 -0.1 -1.2
TRIMMED AVG -2.7 -2.2 -0.9 -1.9

WEIGHT (a/d) 5.8 0.8 3.3
WEIGHT (a/d2) 3.6 0.7 2.1

REG MODEL 1 3.8 4.0 0.8 2.9
REG MODEL 2 0.5 5.1 3.7 3.1
REG LO TERM -2.1 1.9 -0.2 -0.1
REG HI TERM -0.9 0.4 4.8 1.4

RANDOM FIELD 7.1 0.3 3.7

LINEAR INTERP 1.8 0.8 3.2 1.9
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variables or not), including the random field model. As was noted for

most of the distance-weighting predictions, a large proportion of the

error in the prediction occurred near the bottom of the sounding where

the more variable, higher-strength soil layer was encountered.

Figure 5-13 compares three typical regression model predictions:

Model 1, Model 2 and Low Term Model. The selected example is cone

resistance at Sounding E using the transformed data. As was suggested

by the RMSE's presented in Tables 5-4 and 5-5, the Model I regression

does the poorest job of predicting the sounding, but once enough higher

order terms are introduced the differences in the various regression

models are minor.

The effect of the logarithmic transformation can be seen in Figure

5-14. The transformed prediction is somewhat preferential towards the

lower magnitude values, making it usually more conservative in its

strength predictions. Note that one of the problems with using non-

logarithmic variables in regression is demonstrated in the figure. At

approximately 9 meters depth the prediction is slightly negative, which

is physically impossible. Using a logarithmic transformation would

avoid such an estimate.

Apalachicola River Site

Autocorrelation function. Figures 5-15 and 5-16 show the fitted

autocorrelation function for the SPT N values and log(N) values,

respectively. In both cases, a Model 2 regression was used to remove

the nonstationary component of the data set. As a result of the

transformation, somewhat different autocorrelation functions were

obtained. For the non-transformed N values the constant was 125 and
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the range was 400 feet; for the log(N) values the constant was 75 and

the range was 200 feet.

Fitting the exponential curve is very subjective, and arguments

could easily be made for curves different from those selected. Note in

Figures 5-15 and 5-16 that the exponential curve fitted to the regular

data is a good "average" curve, whereas the curve fitted to the

logarithmic data favors the first major data point (which is at a 100

foot distance).

Estimation models. Table 5-7 compares the deterministic model

parameters at Apalachicola in the same manner as Table 5-1 did for

Choctawhatchee Bay. Table 5-8 summarizes the regression analyses,

including their squared multiple correlation coefficients (R2 ), and the

root mean square errors (RMSE) for the regressions over the whole site

(less the sounding to be predicted). Appendix F summarizes the steps in

the STEPWISE procedure as well as the variables selected for the low

term and high term regression models.

Prediction results. Table 5-9 summarizes the root mean square

errors obtained by applying the various estimation models to predict the

three target soundings. This information is graphically presented in

Figure 5-17.

Table 5-7. Deterministic Model Parameters
for Apalachicola River Site

SPT N-Value (blows/ft)
Model Type Estimate Std Dev

Mean 25.2 31.4
Log(Mean) 12.3 3.4-44.6

Median 14.0 16.4
Log(Median) 14.0 4.2-46.7

Trimmed Average 19.0 14.8
Log(Trimmed Average) 14.2 6.5-31.2
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Table 5-8. Regression Models for the Prediction of the

SPT N-Value at the Apalachicola River Site

Station Model Type R2  RMSE

106+00 Model 1 0.21 27.7
(#11) Model 2 0.29 26.2

Low Term 0.33 25.4
High Term 0.37 24.8

Model 1 (Log) 0.51 0.39
Model 2 (Log) 0.69 0.31
Low Term (Log) 0.71 0.30
High Term (Log) 0.74 0.29

114+00 Model 1 0.22 25.9
(#16) Model 2 0.30 24.6

Low Term 0.34 24.0
High Term 0.38 23.3
Model 1 (Log) 0.52 0.38
Model 2 (Log) 0.69 0.30

Low Term (Log) 0.65 0.32
High Term (Log) 0.71 0.29

118+00 Model 1 0.23 28.8
(#19) Model 2 0.32 27.2

Low Term 0.34 26.7
High Term 0.39 25.7

Model 1 (Log) 0.54 0.39
Model 2 (Log) 0.72 0.31
Low Term (Log) 0.75 0.29
High Term (Log) 0.77 0.28

Note: The RMSE for the logarithmic approach was
left in its transformed state to preserve
its true value and meaning.



101

Table 5-9. Results of Spatial Variability Study at Apalachicola River

ROOT MEAN SQUARE ERROR (BLOWS/FT)

METHOD #11 #16 #19 LOG #11 LOG #16 LOG #19

MEAN 37.8 53.0 13.7 44.7 59.4 7.9
MEDIAN 43.6 58.4 7.8 43.6 58.4 7.8
TRIMMED AVG 40.7 55.8 9.3 52.5 66.4 14.9

WEIGHT (a/d) 44.8 33.1 24.0 47.8 23.6 20.5
WEIGHT (a/d2) 46.6 30.9 22.6 47.8 26.8 6.3

REG MODEL 1 31.6 48.9 17.6 38.1 55.6 19.0
REG MODEL 2 28.4 45.1 16.7 32.6 49.9 11.1
REG LO TERM 31.4 45.5 15.5 34.4 49.5 13.0
REG HI TERM 29.5 43.3 18.3 33.8 47.2 12.7

RANDOM FIELD 46.3 29.5 23.7 47.7 26.2 19.6

LINEAR INTERP 49.1 22.0 16.9 49.6 20.6 15.8

NOTE: #11 = N at Station 106+00, BLOWS/FT (Boring #11)
#16 = N at Station 114+00, BLOWS/FT (Boring #16)
#19 = N at Station 118+00, BLOWS/FT (Boring #19)

Table 5-9 and Figure 5-17 suggest that predicting SPT blow counts

at the Apalachicola River site is nearly impossible to any reasonable

degree of accuracy. Even the best sounding (#19) had an average error

of approximately 15 blows/ft. The average RMSE from the regression

analyses of approximately 26 blows/ft would be nonconservative for two

of the soundings. Part of the problem likely lies with the SPT test

itself. Bowles cites the work of several researchers which are critical

of the reproducibility of the Standard Penetration Test (8), raising the

question whether or not the term "test" really applies. In any case,

the site appears to show significant spatial variability, making any

prediction difficult.

No single method of prediction stood out at the Apalachicola River

site. The methods which employed a weight based on separation distance

(weight methods, random field method, and linear interpolation) made a
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significant improvement in the prediction for Boring #16, whereas the

regression models did the best job for Boring #11. No single method

stood out for Boring #19--all methods did a comparatively good job of

predicting the sounding.

Table 5-10 can be used to evaluate the effects of using the

logarithmic transformation on the SPT data. While the differences are

generally modest, the logarithmic transformation appears to usually be

beneficial for the distance-weighting approaches, and detrimental to the

single-value and regression approaches.

Table 5-10. Comparison of Transformed and Nontransformed Approaches

at Apalachicola River

RMSE(REGULAR) - RMSE(LOG)

SPT N VALUES (BLOWS/FT)

METHOD #1] #16 #19 AVG

MEAN -6.9 -6.3 5.7 -2.5
MEDIAN 0.0 0.0 0.0 0.0
TRIMMED AVG -11.8 -10.6 -5.6 -9.3

WEIGHT (a/d) -3.0 9.6 3.5 3.4
WIIGHT (a/d2) -1.2 4.1 16.3 6.4

REG MODEL 1 -6.5 -6.7 -1.4 -4.9
REG MODEL 2 -4.3 -4.9 5.6 -1.2
REG LO TERM -2.9 -4.0 2.5 -1.5
REG HI TERM -4.4 -3.9 5.5 -0.9

RANDOM FIELD -1.4 3.3 4.0 2.0

LINEAR INTERP -0.5 1.4 1.1 0.6

To complete the evaluation of the various prediction methods at the

Apalachicola River site, an inspection of plots of the actual

predictions was made. Typical results are presented in Figures 5-18 and

5-19.
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Figure 5-18 compares several of the distance-weighting approaches

for Boring #16. At the Apalachicola River site the large variation in

the SPT N values, especially below elevation -50 feet, resulted in some

differences among the various methods. Oepending on the number of

soundings used to make the prediction and their relative weights, fairly

significant differences in the predictions were obtained. Nevertheless,

no one method seemed to consistently outperform the others.

Figure 5-19 compares several of the regression models for Boring

#19. None of the regression models describe the sounding well, despite

relatively low RMSE's for this boring. Note also that the high term

regression model predicts negative values near the surface, and is

generally less conservative than its transformed counterpart.

As a result of the spatial variability study at the Apalachicola

River site, one can conclude that prediction between soundings is not

possible to any reasonable degree of accuracy. As a result, soundings

at (or very near) the locations of interest will be needed for design

purposes.

Archer Landfill Site

As a result of the generally favorable (albeit small) effects of

using the logarithmic transformation on data at the Choctawhatchee Bay

and Apalachicola River sites, only a transformed data set was analyzed

at the Archer Landfill site.

Autocorrelation Function. Figure 5-20 shows the fitted

autocorrelation functions for the CPT qc and fs values at the Archer

Landfill. A Model 1 regression was used to remove the nonstationary

component of the data set. Slightly different autocorrelation functions
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were obtained for the two measurements. For the cone resistance

measurements, the constant was 40 and the range was 100 feet. For the

friction resistance, the constant was 30 and the range was 75 feet.

Estimation Models. Table 5-11 compares the parameters used for the

deterministic models at the Archer Landfill. Tables 5-12 and 5-13

summarize the regression analyses for each site predicted. Appendix F

summarizes the steps in the STEPWISE procedure along with the variables

selected for the low term and high term regression models.

Prediction results. Table 5-14 summarizes the root mean square

errors obtained by applying the various estimation models to predict the

three target soundings. Figures 5-21 and 5-22 graphically summarize the

information contained in Table 5-14.

As was noted at the Choctawhatchee Bay site, Figures 5-21 and 5-22

suggest that while the differences in some of the estimation methods are
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Table 5-11. Deterministic Model Parameters for Archer Landfill Site

Cone Resistance (MPa)" Friction Resistance (kPa)

Model Type Estimate Std Dev Estimate Std Dev

Log(Mean) 7.70 3.85-15.40 46.8 21.3-102.8

Log(Median) 8.62 4.69-15.82 49.7 26.0-95.1

Log(Trimmed Average) 8.09 5.13-12.76 49.9 31.5-78.9

Table 5-12. Regression Models for the Prediction of Cone

Resistance at the Archer Landfill Site

Sounding Model Type R2  RMSE

4 Model I (Log) 0.77 0.14
Model 2 (Log) 0.81 0.13
Low Term (Log) 0.81 0.12
High Term (Log) 0.88 0.10

5 Model I (Log) 0.76 0.15
Model 2 (Log) 0.80 0.14
Low Term (Log) 0.84 0.13
High Term (Log) 0.88 0.11

8 Model 1 (Log) 0.75 0.15
Model 2 (Log) 0.79 0.14
Low Term (Log) 0.83 0.13
High Term (Log) 0.85 0.12

Note: The RMSE for the logarithmic approach was
left in its transformed state to preserve
its true value and meaning.
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Table 5-13. Regression Models for the Prediction of Friction
Resistance at the Archer Landfill Site

Sounding Model Type R2  RMSE

4 Model I (Log) 0.77 0.16
Model 2 (Log) 0.79 0.16
Low Term (Log) 0.85 0.13
High Term (Log) 0.90 0.11

5 Model I (Log) 0.78 0.17
Model 2 (Log) 0.80 0.16
Low Term (Log) 0.84 0.14
High Term (Log) 0.89 0.12

8 Model I (Log) 0.78 0.17
Model 2 (Log) 0.80 0.16
Low Term (Log) 0.82 0.15
High Term (Log) 0.85 0.14

Note: The RMSE for the logarithmic approach was
left in its transformed state to preserve
its true value and meaning.

Table 5-14. Results of Spatial Variability Study at

Archer Landfill Site Using Transformed Data

ROOT MEAN SQUARE ERROR

METHOD F4 5 8 f4 F5 F8

MEAN 3.91 3.25 6.14 25.2 35.3 49.3
MEDIAN 4.21 3.17 5.74 25.4 34.1 48.3
TRIMMED AVG 4.02 3.18 5.96 25.4 34.0 48.2

WEIGHT (a/d) 2.36 5.05 3.79 13.0 30.8 31.8
WEIGHT (a/d2) 2.47 4.83 4.18 13.6 28.4 34.6

REG MODEL 1 2.14 3.42 3.11 13.0 13.4 24.4
REG MODEL 2 1.52 2.61 3.39 12.3 14.2 29.3
REG LO TERM 1.51 3.67 3.20 13.3 17.0 31.6
REG HI TERM 1.91 6.57 3.37 12.5 27.4 25.2

RANDOM FIELD 1.81 3.28 3.80 12.4 21.1 33.0

LINEAR INTERP 1.77 3.58 2.65 9.8 19.6 23.3

NOTE: Q4 qc at Sounding #4 F4 = fs at Sounding #4
Q5 qc at Sounding #5 F5 = fs at Sounding #5
Q8 qc at Sounding #8 F8 = fs at Sounding #8

I- i I II I
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very small, overall the regression analyses performed as well as any of

the other methods in predicting electronic cone penetrometer soundings

(notwithstanding the anomalously high error rate for qc at Sounding #5).

All of the more sophisticated methods generally were able to improve on

the error rate for the single-value methods. Additionally, the two

straight weighting methods usually had higher RMSE's than did the

regression, random field, or linear interpolation models.

To complete the evaluation of the various prediction methods at the

Archer Landfill site, an inspection of plots of the actual predictions

was made. Typical results are presented in Figures 5-23 and 5-24.

Figure 5-23 compares -several of the distance-weighting methods,

showing that the differences in the methods are indeed relatively minor.

As has been observed at the other sites studied, most of the error

occurs in stiffer strata, where the locations of the high-amplitude

peaks, if present, may not coincide exactly with adjacent soundings.

Figure 5-24 compares the various regression models. As a result of

the relative uniformity of the Archer Landfill site, all of the

regression models are similar despite varying levels of order in the

variables. Even the first order model, Model 1, can describe fairly

well the gradually increasing magnitude in the soil property.

Discussion of Results

Autocorrelation function. The autocorrelation function is a

conceptually appealing approach to quantifying the correlation structure

in soil properties at a site. It's usefulness has been demonstrated by

other researchers, primarily in the vertical direction. Wu notes that

research in the horizontal direction has been limited due to lack of
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data (64). This study's attempts to improve this situation have not met

with a great deal of success.

Generation of the autocorrelation function from the data set was

reasonably straight-forward, following Kulatilake and Ghosh's

recommended approach (26). Fitting a curve to the autocorrelation

function likewise was not difficult, although scatter in the function

made the selection of a fit somewhat subjective. The major objections

to the autocorrelation function came in the results. The site with the

longest range of 200 to 400 feet, Apalachicola River, proved to be

virtually impossible to interpolate with any reasonable accuracy. The

other two sites, with ranges between 50 and 100 feet, gave reasonably

good predictions. Thus it would seem that the autocorrelation function

on stationary residuals is not a reliable measure of a site's ability to

be interpolated successfully. One reason for this incongruity is

thought to be that the trend portion of the data at Choctawhatchee Bay

and Archer Landfill (from the regression analysis) did a reasonably good

job of describing the site, leaving relatively small residuals that were

nearly random and uncorrelated. Apalachicola River, on the other hand,

involved error rates that were so large that "large" residuals

correlated fairly well with "large" residuals. Complicating any

definitive conclusions is the fact that the Apalachicola River site

involved SPT measurements, whereas the Choctawhatchee Bay and Archer

Landfill sites were electronic CPT soundings. Studies at additional

sites may be warranted.

The incorporation of the autocorrelation function into the random

field model proved of limited utility. Despite its basis in stochastic

theory, the model performed no better or worse than the other distance-
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weighting methods. The considerable additional work required to

implement the random field model, especially when compared to simpler

methods such as linear interpolation, cannot be justified based on the

results of this study. It is conceivable that the model may prove

applicable for shorter lateral distances, but the practical usefulness

of such an application would be limited.

Logarithmic transformation. The use of a logarithmic

transformation on the Florida data set was helpful in achieving some

symmetry in the data by stretching out the large numbers of low-

magnitude values while contracting the small numbers of unusually high-

magnitude ones. While the transformation generally resulted in

relatively minor changes in the error rate when compared with the

untransformed approach, these changes tended to be for the better.

Additionally, the transformed data generally resulted in more

conservative (lower) predictions. A side benefit of the transformation

was the prevention of negative predictions when using regression

analysis.

The biggest objection to using the logarithmic transformation is

the difficulty in interpreting the variability in the data. As a result

of the transformation, the standard deviation would not be symmetrical

about the mean or predicted value upon conversion back to conventional

units. Despite this objection, if the logarithmic transformation

results in a more symmetrical data set (as is did for the Florida data

sets evaluated), then the logarithmic standard deviation would be a

truer measure of the deviation in the prediction, and its use is

encouraged.
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Predictions. None of the prediction methods employed in this study

consistently stood out as superior to the others. Nevertheless, several

general trends were observed. Figure 5-25, which was used to

demonstrate these trends, plots the average RMSE for each method,

divided by the mean estimated using the 10% trimmed average on a

transformed data set. This estimate of the mean was used to normalize

the data for purposes of comparison because it had the smallest standard

deviation of any of the single-value methods. In addition, Figure 5-25

plots the standarddeviation for the average normalized mean, giving a

relative estimate of the scatter in the errors.

The three single-value predictors (the mean, median, and trimmed

average) were included in the study primarily as a gauge against which

to judge the more sophisticated models. While differences between the

three predictors were generally negligible, the other more sophisticated

models usually produced lower root mean square errors. Therefore, use

of the single-value approach for predicting penetration soundings is not

recommended.

The distance-weighting methods, which were comprised of the two

weight methods, the random field model, and linear interpolation,

usually were indistinguishable from one another. No single approach

could claim to be better than the others. The group as a whole produced

competitive average RMSE's, but the scatter was sometimes rather large,

raising some questions as to the reliability of the estimates.

The regression models generally produced among the lowest error

rates. Of perhaps equal importance is the fact that, with few

exceptions, the scatter in the error rates was relatively low when

compared with the distance-weighting methods. This characteristic may
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be due to the lower influence that individual soundings have on the

regression model, when compared with the distance-weighting models.

Looking at the individual regression models, the Model 1 or linear

regression generally had too few terms to adequately describe the

soundings. The higher-order models typically did a good job of

prediction, although no consistent advantage was seen in using the

highest-order models (High Term Models). The stepwise model generator

seemed effective in generating significant models and its use is

recommended.

An additional benefit of the regression models is the calculation

of the root mean square error. Table 5-15 summarizes how well the model

root mean square error was able to estimate the actual RMSE obtained

from the prediction. The Choctawhatchee Bay site model estimate was
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generally within 25% of the actual RMSE, with the model estimating

higher (which would be conservative). The Apalachicola River site fared

much more poorly, largely due to the very poor estimate for Boring #16.

Discounting this one sounding, using the model RMSE would appear to

usually be a reasonable, yet conservative approach to estimating one's

confidence in the prediction.

The RMSE can also be used as a gauge of the likelihood of success

in prediction. The model error rates from Choctawhatchee Bay and Archer

Landfill were fairly low values, and the predictions were in general

fairly good. The Apalachicola River error rates, on the other hand,

were unacceptably large, and the subsequent predictions were (not

surprisingly) poor. The RMSE may be a useful tool in designing the

field exploration program and determining when an adequate number of

soundings have been made,

Recall in Chapter 3 that the local standard deviation of electronic

cone penetrometer soundings is estimated to be O.5(qc) to a maximum of

3.0 MPa for cone resistance, and 0.5(fs) to a maximum of 24 kPa for

friction resistance. A review of the root mean square errors for the

two ECPT sites (Choctawhatchee Bay and Archer Landfill) suggest that the

majority of the uncertainty is comprised of local variability--

therefore, the prediction models (except for the single-value models)

can all be judged to have done a good job of estimating the soundings.

No similar judgment can be made at the Apalachicola River site due to no

information on the local variability of SPT measurements.

Recommendations. Based on the results of this spatial variability

study, the following approach is recommended for characterizing the soil

properties at a site:
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Table 5-15. Comparison of Regression Model RMSE with Prediction RMSE

PERCENT ERROR (Positive means model predicted higher)

LOCATION SOUNDING MODEL 1 MODEL 2 LO TERM HI TERM AVERAGE

Choctawhatchee E 10.2 26.3 17.4 16.9 17.7
qc (MPa) H 19.0 5.0 -26.4 -36.9 -9.8

J -3.1 22.5 33.0 36.3 22.2

SITE AVG 8.7 18.0 8.0 5.4
SITE STD 9.1 9.3 25.1 31.0

Choctawhatchee E 5.0 21.3 14.6 6.3 11.8
fs (kPa) H 34.7 26.1 19.0 4.0 20.9

J 2.7 10.5 -6.8 -4.0 0.6

SITE AVG 14.1 19.3 8.9 2.1
SITE STD 14.6 6.5 11.3 4.4

Apalachicola 11 -14.1 -8.4 -23.6 -19.0 -16.3
N (blows/ft) 16 -88.8 -83.3 -89.6 -85.8 -86.9

19 38.9 38.6 41.9 28.8 37.1

SITE AVG -21.3 -17.7 -23.8 -25.3
SITE STD 52.4 50.2 53.7 47.0

MODEL AVG 0.5 6.5 -2.3 -5.9
MODEL STD 35.4 34.3 38.0 35.4

* Take measurements spaced at intervals small enough to generally

characterize the site. The number of soundings will be determined by

how rapidly the soil properties are changing spatially. This

determination can be accomplished by graphically comparing the measured

soil properties, or by performing a preliminary regression analysis.

The regression analysis should include enough terms to generally

describe the trends in the soundings--as a rule, up to second order

horizontally and 2 to 5 or more orders vertically may be required. The

squared multiple correlation coefficient (R2 ) should hopefully be

greater than 0.5 (may not be possible to attain at all sites), and the

root mean square error (RMSE) from the regression analysis should be
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reasonable. When deciding what RMSE's are reasonable, keep in mind the

local variability of the device in question.

* Improvement in predictions can often be achieved by using data

transformations. The goal of the transformation should be to achieve a

degree of symmetry in the measured values. Different transformations

are available, depending on the nature and strength of the

transformation required. Common transformations to expand lower numbers

include (in order of increasing strength) square roots, logarithms, and

negative reciprocals. To expand larger numbers, powers of two or more

can be used. A good elementary statistics text can provide additional

information on transforming data sets.

* Once the data are collected and transformed as required, inspect

the data for high-frequency spikes (say several spikes over a 0.5 meter

increment). If the spikes exist and the number of data points are large

(as is typical for electronic friction-cone penetrometer data) then a

data filter is recommended. Taking the average value over each 0.5

meter increment and assigning this value to the midpoint of the

increment seemed to work well for the penetrometer data used in this

study.

* Assuming a reasonable number of soundings is available,

regression analysis is recommended to develop a mathematical model for

the site. Use of a stepwise model generator is also encouraged to

insure that all variables in the model are significant and contributing.

This model can then be used to interpolate soundings at other locations

within the range of the data. If too few soundings exist to develop a

regression model, then simple linear interpolation can be used

(especially if the soundings have similar profiles).



122

* To estimate the average error in the prediction, use of the RMSE

from the regression analysis is recommended (if linear interpolation is

used, the RMSE must be estimated). In no case should the RMSE be less

than the local variability of the device being used (determined

separately). Recall Equation 4-4, which states that the total variance

is equal to the sum of the individual contributing variances. Since the

RMSE is an estimate of the standard deviation in the regression model,

then its square (called the mean square error, or MSE) is an estimate of

the model's variance. The local MSE can be subtracted prom the

regression MSE and the two treated separately--this would permit the

estimation of lower error rates for low-value measurements. As an

example, consider the prediction of qc at Sounding J of Choctawhatchee

Bay. Using the Low Term regression model

Model RMSE = 4.58 MPa Model MSE = 21.0 (MPa)2

Local RMSE = 3.00 MPa Local MSE = 9.0 (MPa)2

Spatial Variability MSE = Model MSE - Local MSE

= 12.0 (MPa)2

Predicted MSE = Local MSE + Spatial Variability MSE

= [0.5(qc)]2 + 12.0 (MPa)2  for qc 6 MPa

= (9.0 + 12.0) (MPa)2 = 21.0 (MPa)2  for qc > 6 MPa

The predicted RMSE would simply be the square root of the predicted MSE.

Note that the minimum possible qc of 0 MPa is a limiting value. Figure

5-26 plots the RMSE bands for the example sounding.
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CHAPTER 6

COMPARISON OF 10-TON AND 15-TON FRICTION-CONE PENETROMETER TIPS

Introduction

Approximately 30% of the electronic cone penetrometer soundings

performed for this research project were made using the University of

Florida's 15-ton penetrometer tip, whose physical size is larger than

the standard 10-ton (or 5-ton) tip. The local variability study of

Chapter 3 suggested that the 15-ton tip's repeatability was comparable

to that of the 5-ton and 10-ton. There was concern, however, that the

actual magnitude of the measurements between the devices may not be

exactly comparable. This concern stemmed not only from the physical

size difference between the penetrometer tips, but also from the

difficulties encountered with the 15-ton tip's friction resistance

measurements (as discussed in Chapter 2). The latter reason presented a

greater concern, as Meigh notes that cones ranging in projected areas

from 500 to 1500 mm2 (0.78 to 2.33 in2) do not differ significantly in

their measured results (34). In anticipation of using the 5-ton, 10-ton

and 15-ton penetrometer measurements for the soil classification study,

an evaluation of the devices' comparability was undertaken.

The purpose of this phase of the research is to compare

measurements made with the UF 15-ton penetrometer tip with those made by

the UF 10-ton and 5-ton tips (Note: a similar study between the

standard-size 5-ton and 10-ton tips was not undertaken due to lack of

sufficient data in the data base--however, neither tip "stood out" from

124
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one another, suggesting comparability between the 5-ton and 10-ton

tips). The approach used was nearly identical to that used for the

local variability study of Chapter 3. 5-ton and 10-ton ECPT soundings

were paired with 15-ton soundings that were nearby. Then using

graphical and statistical techniques, the differences in the pairs were

described and quantified. The "digital filter" described in Chapter 3

was used to help insure any measured differences were truly

representative of the data.

Size Comparability Study Data Base

The research project data base was searched for pairs of ECPT

soundings that met two criteria: the soundings must be no more than 4.6

meters (15 feet) apart, and different size penetrometer tips must have

been used in each sounding. The distance criteria was admittedly

somewhat arbitrary, and represented an attempt to include a

representative number of sounding pairs in the analysis, while hopefully

insuring that the tips were testing the "same" material. The resulting

data base used in the size comparability study is summarized in Table

6-1.

The minimum spacing was determined to be 44 cm (17 in), based on

Robertson and Campanella's recommendation of 10 hole diameters from open

boreholes and excavations, to allow for potential radial stress relief

effects (41). As a check on the maximum selected spacing of 4.6 meters,

the sounding pairs were graphically overlaid and evaluated as to the

likelihood that the material was approximately the same. If reasonable

doubt existed, the sounding was discarded from further analysis. Note

that separation distances varied between 0.4 and 4.3 meters (1.4 and 14

feet).
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Table 6-1. Data Base for Size Comparability Study

10-TON 15-TON Separation
Location (ID) TIP TIP Distance (ft) Comments

Fort Myers (FMYER) C010D C010F 14.0 COOD = 5-ton

Jacksonville (JAXa) C027A C027C 5.0 qc only

Jacksonville (JAXb) C027B C027C 5.0 qc only

Jacksonville (JAXc) C028B C028A 6.0 qc only

Overstreet (OVRST) CO04A CO04B 4.6 qc only

Sarasota Garage (SGAR) CO06A CO06B 1.4

West Palm Beach (WPBa) C015A C015C 8.4

West Palm Beach (WPBb) C015B C015C 11.2

West Palm Beach (WPBc) C017B CO17A 7.9

The qc data were comprised of 3056 observations, whereas the fs

data had 1839 observations. The same data filter introduced in Chapter

3 was employed to remove the high-frequency noise from the data. Figure

6-1 shows the filtered cone resistance data plotted about the expected

1:1 line. Most of the data are relatively well-behaved about the line,

and display a fairly constant variance. Figure 6-2 shows a similar plot

for the friction resistance data. This figure suggests that the 10-ton

penetrometer tip measures higher values for friction resistance when

compared with the 15-ton tip, especially for friction values below 100

kPa (the bulk of the data).

Evaluation of Data Scatter

To evaluate the data scatter, regression analysis using the REG

procedure of the SAS system was used. Both the complete data set and

the filtered data were evaluated. The models used in the analysis were
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(qc)1O = bo + b1(qc) 15  ........................................... (6-1)

(fs)IO = bo + bl(fs) 15  ........................................... (6-2)

The results of the size comparability study are summarized in Table 6-2.

Table 6-2. Results of Size Comparability Study

Parameter Avg Diff
(units) Filter (lOt-15t) b0  b, RMSE

Cone Resistance No -0.59 1.16 0.90 5.70
(MPa)

Yes -0.54 0.68 0.92 4.42

Friction Resistance No 15.2 31.9 0.78 44.2
(kPa)

Yes 15.2 29.5 0.80 29.5

The root mean square errors obtained from the regression analysis

on the filtered data are larger, but comparable to the errors obtained

from the local variability study (3.0 MPa for qc, and 24 kPa for fs).

More troubling, however, is the obvious bias in the friction resistance

measurements as shown in Figure 6-2. This bias helps to explain some of

the problems encountered with the UF 15-ton penetrometer tip, especially

concerning persistent negative friction readings in soft soils.

Based on the results of the size comparability study coupled with

the history of problems with the 15-ton tip, the 10-ton data set is

judged superior (and hence not completely comparable with the 15-ton

data). Therefore data collected with the University of Florida 15-ton

penetrometer tip should not be mixed with other data until the cause of

the discrepancy can be isolated and quantified.



CHAPTER 7

CLASSIFICATION OF FLORIDA SOILS USING THE ECPT

Introduction

For any project requiring deep foundations, knowledge of the

underlying soil types and site stratigraphy is of paramount importance.

To obtain this information a site investigation is typically undertaken,

usually consisting of some combination of soil borings, sampling, and

standard penetration testing. However, the electronic cone penetration

test (ECPT) offers some significant advantages over the more common site

investigation methods (34,35):

1. Soil borings, sampling, and the SPT are more expensive than
the ECPT, and much slower.

2. The ECPT provides a virtually continuous record of the
sounding, often permitting identification of very thin layers.

3. Disturbance of the ground is minimized.

The electronic friction-cone penetrometer is not without disadvantages,

however, including

1. The lack of a physical sample to verify the indirect
classification of soil by the ECPT.

2. A limited ability to penetrate very stiff soil layers.

3. The requirement for careful use and maintenance of the
sensitive electronic equipment.

In the classification of soils, the usual schemes employ

descriptive categories based on visual and textural properties (clay,

silty clay, shelly sand, etc.), or a structured classification system

based on measured index properties. The most commonly used soil

129
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classification system in the United States is the Unified Soil

Classification System (USCS), which employs grain size distribution and

Atterberg limits tests on remolded soil samples to classify the soil

into distinct groups (15). The American Society of Testing and

Materials (ASTM) Standard D2487 provides details on applying the USCS

(2).

Classification of soil by the ECPT, however, is based on in situ

soil behavior, as measured by the cone resistance, qc, and the friction

resistance, fs" Classification into "familiar" categories is attempted

by the use of classification charts; however, obvious difficulties are

encountered when trying to correlate in situ soil behavior to observed

physical characteristics or to somewhat arbitrary index parameters on

remolded soil samples. For example, Olsen and Farr point out that a CL

(low plasticity clay) classification in the USCS becomes an SC (clayey

sand) if the percent passing the US Number 200 sieve changes from 50.1%

to 49.9%, a negligible difference with regards to the soil's strength

behavior (35).

The purpose of this phase of the research is to evaluate existing

classification charts for their applicability to soils indigenous to

Florida, and to recommend modifications as required. To accomplish this

objective, cone penetrometer soundings were made at some 27 locations

where nearby SPT boring logs (which include soil identification) were

available. In addition, laboratory analyses were either performed or

obtained on a limited subset of soil samples from the SPTs as a means of

evaluating the accuracy of the boring log classifications. Using this

data base, two types of discriminant analysis were employed to

statistically analyze the data base, and determine the "best" ECPT

classification system for Florida soils.
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Current Practice

Measurement Considerations

In employing the electronic friction-cone penetrometer for

identification of soil types, the challenge is to use two (or three in

the case of a piezocone) stress measurements to discriminate an often

large number of discrete soil categories. In addition to the

difficulties presented by the often arbitrary classification boundary

lines dividing up a soil continuum, one is also faced with overlapping

zones of soil behavior compounded by natural randomness. Despite these

obstacles, the ECPT enjoys a good reputation as an indirect soil

classification technique.

As an aid to amplifying the differences in strength behavior

between different types of soil, the friction ratio, Rf, is typically

used:

Rf = fs/qc (in percent) .......................................... (7-1)

This ratio is very useful in distinguishing soil types because

frictional stress in fine-grained soils is typically a larger percentage

of the total stress acting on the penetrometer than in coarser soils.

In an early use of the cone penetrometer (mechanical) for soil

identification, Begemann employed only the friction ratio. He

classified soils with an Rf below 2.5% as sands, over 3.5% as clays, and

2-4% as silts or soil mixtures (35). Current classification schemes

typically plot qc against Rf to permit greater differentiation of soil

types.

Other considerations in using the ECPT for soil identification

result from the physics of penetrating soil with a probe. The



132

resistance measured by the cone penetrometer is influenced by the soil

some 5-10 cone diameters above and below the tip, with this influence

extending further for stiffer soils (34,42). This phenomenon may cause

some imprecision when using the cone penetration test to identify thin

soil layers and soil interfaces. Also, several authors have cited

evidence indicating overburden pressure may influence the cone and

friction resistance readings (34,35,36). Meigh notes that the friction

ratio may decrease for some fine-grained soils with increasing depth.

Olsen and Malone recommend normalizing qc, fs and Rf readings to a

vertical effective stress, p', of 1 tsf as follows:

n= qc/(P) n ............................................(7-2)

fsn = fs/(p ') ....... ............................................ (7-3)

Rfn = fsn/qcn .................................................... (7-4)

in which n is an exponent value ranging from 0.60 for coarse sands to

almost 1 for clays, and 0.75-0.90 for soil mixtures and silts. Olsen

and Malone use this exponent value to account for the stress bulb in

front of the cone increasing at a less than linear rate with increasing

vertical effective stress.

Typical Classification Systems

ECPT classification systems are typically embodied in two-

dimensional charts plotting cone resistance, qc, against friction ratio,

Rf. While all of the charts contain common features (such as locating

sand at high qc and low Rf values), the details and complexities of the

charts differ. For example, Figure 7-1 is a simple chart employing

uncorrected values of log(qc) and Rf to identify general soil types.
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This is a working version of a much more complex earlier classification

chart, shown in Figure 7-2. This chart indicates expected trends in

several index parameters and suggests possible classifications from the

Unified Soil Classification System.

Figure 7-3 shows a classification scheme employing discrete

boundaries for twelve identified soil types. Such a scheme is

attractive for its ease of interpretation and potential for computer

implementation, but may be too inflexible unless modified for local

applications. Figure 7-4 is a recent chart which attempts to account

for vertical effective stress effects by employing normalized cone

measurements. This chart uses a horizontal log scale to accentuate the

lower friction ratio values, and also suggests equivalent USCS ranges as

did Figure 7-2.

Analysis Approach

Data Base Creation

A large data base was created to evaluate the use of the electronic

cone penetration test for soil classification in Florida. The basic

approach was to collect ECPT data near available SPTs, and then

carefully match the ECPT measurements with the SPT soil descriptions. A

maximum separation distance of 7.6 m (25 ft) was selected (somewhat

arbitrarily) to help insure the ECPT soil types were the same as the SPT

soils. Data were rejected from the analysis if there existed a

reasonable doubt that the cone measurements represented the soil layer

described in the boring log. This data base represented 27 soundings in

8 Florida cities. Some 15 different soil types were identified, as

shown in Table 7-1. These soil types were combined into 7 major
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categories, also shown in Table 7-1. This grouping was based on the

verbal descriptions of the soils categorized by the Unified Soil

Classification System, as presented in ASTM Standard 0 2487, and as

discussed by Perloff and Baron (2,39). Table 7-2 summarizes the source

of the data used for this portion of the research. Details on the

soundings are contained in Appendix A and Knox (25).

Table 7-1. Soil Types in Classification Data Base

Number of Percent of
ID# Soil Type Category Observations Total Data

2 Organic Material 0 (Organic) 26 0.3
3 Clay C (Clay) 368 4.6
7 Silty Sand-Sandy Silt M (Silt) 150 1.A
8 Sand-Silty Sand T (Silty Sand) 2098 25.9
9 Sand S (Sand) 2924 36.3

13 Shelly Sand S (Sand) 168 2.1
14 Sandy Clay C (Clay) 298 3.7
15 Sandy Clay with Shell C (Clay) 10 0.1
16 Clayey Sand U (Clayey Sand) 1047 12.9
17 Clayey Sand with Shell U (Clayey Sand) 481 5.9
19 Sand with Organics S (Sand) 26 0.3
21 Clay with Shell C (Clay) 18 0.2
23 Weathered Rock R (Rock) 43 0.5
29 Cemented Sand S (Sand) 269 3.3
30 Cemented Clayey Sand U (Clayey Sand) 161 2.0

8087 100.0

In addition to the ECPT data, laboratory analysis of 69 SPT soil

samples was performed and correlated with electronic cone penetration

test measurements. The purpose of this analysis was to provide "exact"

soil classifications to compare with the ECPT measurements, and to

provide a means of qualitatively verifying the soil identifications

contained in the SPT field logs. The samples were classified by the

Unified Soil Classification System, as applied in ASTM D2487 (2). To

insure accurate representation of a sample's ECPT measurements, only

samples with nearly constant qc and fs values over the sample's length
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were used, as recommended by Olsen and Farr (35). Table 7-3 summarizes

the results of the laboratory analyses, details of which are presented

in Appendix C.

Table 7-2. Soil Classification Data Base

ECPT-SPT
SITE ECPT # SPT # DISTANCE

Sarasota Garage C006A S006A 7.6 m (25 ft)
Fort Myers Interchange C010D S010A 4.8 m (16 ft)
West Palm 1-95 C015A S015A 4.5 m (15 ft)

C015B S015A 7.1 m (23 ft)
C016C S016A 6.3 m (21 ft)
C017B S017A 4.5 m (15 ft)

Choctawhatchee Bay C019B S019A 1.2 m (4 ft)
C019G s019C 5.2 m (17 ft)
C019J S019B 4.4 m (14 ft)
C019K S019B 5.0 m (16 ft)
C020B S020A 1.5 m (5 ft)
C021D S021A 4.7 m (15 ft)

White City C022A S022A 7.6 m (25 ft)
C022B S022B 1.6 m (5 ft)
C022C S022C 3.0 m (10 ft)

Orlando Arena C023A S023A 7.4 m (24 ft)
C023C S023C 7.3 m (24 ft)
C023D S023E 1.5 m (5 ft)

Orlando Hotel C024A S024A 2.2 m (7.4 ft)
C024B S024B 3.1 m (10 ft)
C026A S026A 4.3 m (14 ft)

Jacksonville Coal Terminal C028B S028A See Note
West Bay C030A S030A 2.7 m (9 ft)

C030B S030B 0.6 m (2 ft)
C030C S030C 7.2 m (24 ft)
C030D S030D 2.9 m (10 ft)
C030F S030F 5.6 m (18 ft)

Note: Exact location of SPT undetermined, but believe distance criteria
met. Inspection of data supports belief that soils were correctly
identified.
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Table 7-3. Summary of Laboratory Tests on SPT Samples

USCS ANALYSIS NUMBER OF
SITE CLASSIFICATION CATEGORY OBSERVATIONS

Sarasota Garage (Site 006) SM T 3
SP-SM T 2

Sarasota Condo (Site 008) SM T 3

Fort Myers Airport (Site 012) ML M 1
SC U I

Choctawhatchee Bay (Site 019-021) CH C 3
SM T 3

SP-SM T 1
SP S 6

White City (Site 022) SM T 6
SP-SM T 8
SP S 3

Orlando Hotel (Site 024-026) SC U 2

West Bay (Site 030) ML M 3
SM T 6

SP-SM T 10
SP S 5

Lake Wauberg (Site 031) CH C I
MH M 2

SUMMARY CH C 4
1H, ML M 6

SC U 3
SM, SP-SM T 42

SP S 14
69

Discriminant Analysis

Dillon defines discriminant analysis as "a statistical technique

for classifying individuals or objects into mutually exclusive and

exhaustive groups on the basis of a set of independent variables" (14,

p. 360). For this phase of the research, the groups are either soil

types or the more general soil category, and the independent variables

are measurements of cone resistance, qc, and friction ratio, Rf (Note
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that friction resistance measurements are not independent of qc and Rf).

Two discriminant analysis techniques were used for analyzing the soil

classification data base: a parametric approach, and a nonparametric

approach.

Parametric approach. The parametric approach was implemented using

the DISCRIM Procedure of the SAS System (48). The term parametric

implies that assumptions are made on the distribution of the data;

specifically, the distribution of data is assumed to be approximately

multivariate normal. Using this assumption, DISCRIM calculates a vector

for each group (for each soil type or category in this case) which

contains the means of the variables (qc and Rf, for example) for all

members of that group. A generalized squared distance (a conceptual

distance based on the values of the independent variables) between an

observation and each of the mean vectors is then calculated. The

observation is classified into that group that is closest (i.e., has the

smallest generalized squared distance).

The generalized squared distance, D2(x) from an observation vector,

x, to group t is

DO (x) = (x - mt)'S-1 (x - mt) ..................................... (7-5)

in which mt = mean vector for group t

S = pooled covariance matrix

The covariance matrix accounts for correlations between the independent

variables. This prevents two variables that are highly correlated from

contributing as much information as a third, truly independent variable

(32). The parametric approach assumes that the within-group covariance

matrices are all equal, and represented by this pooled matrix.
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Nonparametric approach. The nonparametric approach was implemented

using the NEIGHBOR Procedure of the SAS System (48), which performs a k-

nearest-neighbor discriminant analysis. The term nonparametric implies

that no assumptions are made on the distribution of the data. The

NEIGHBOR procedure calculates the Mahalanobis distance between an

observation and all other observations. Classification of the

observation is based on the group containing the highest proportion of

the k nearest neighbors:

d2(x1 , x2) = (x1  - x2)'S-I(x -x2) ............................... (7-6)

in which x, and X2 are two observation vectors, and S is the pooled

covariance matrix. For all analyses in this project, a k of 5 was used.

Results and Discussion

Data Transformation

Implementation of the parametric approach for discriminant analysis

assumes the independent variables to be approximately normally

distributed. Also, the within-group covariance matrices are assumed

equal. While many worthwhile analyses have been undertaken in violation

of the basic assumptions of discriminant analysis, the results of such

analyses may be questionable, and caution is advised in interpreting the

results. In particular, the analysis may be overly sensitive to small

sample sizes, and the tests of significance and estimated classification

error rates may be biased. While the overall error rate may be little

affected, individual group error rates may be significantly in error

(14,32).
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To better approximate a normally-distributed data set, a

logarithmic data transformation was used. During exploratory data

analysis of the cone measurements, virtually all of the different soil

types exhibited a frequency distribution that appeared to approximate a

log-normal distribution. Such a distribution would cause estimates of

the mean to be nonrepresentative of the bulk of the data. To improve

the symmetry of the data set, base-l0 logarithms of the cone resistance

and friction ratio values were used, resulting in better estimates of

the center of the distribution. A typical effect of the data

transformation was previously demonstrated in Figure 5-1.

Data Sets

Four data sets were evaluated using both the parametric (SAS's

DISCRIM procedure) and the nonparametric (SAS's NEIGHBOR procedure)

discriminant analysis approaches. The first data set was the laboratory

classification data. These data were then normalized to an effective

overburden pressure of 96 kPa (1 tsf) using Olsen and Malone's approach

to produce the second data set (Appendix E describes the computer

approach used). An average total unit weight of 17.3 kN/m 3 (110 pcf)

was assumed for the soil. These two data sets were used to evaluate the

accuracy of the driller's field classifications from the SPT tests.

They were also used to compare the results of discriminant analysis

using raw versus normalized data.

Once the initial evaluation on a small data set was complete,

discriminant analysis of the full data set (as presented in Tables 7-1

and 7-2) was undertaken. The third data set contained the raw cone

penetration test data, whereas the fourth contained the normalized data.
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Laboratory Data Analysis

Accuracy of SPT soil types. Table 7-4 shows how the laboratory

soil categories compare with the categories from the SPT logs. A

careful examination of the table reveals several interesting points.

Over 81% of the soil was either a sand or a silty sand, but less than

51% of the samples were identified as such on the SPT logs. Most of the

remaining 30% were classified as a clayey sand. Even more enlightening

is the fact that only 5 out of 42 silty sand samples were correctly

identified, the rest being classified usually as either a sand or a

clayey sand. Note also that the 6 samples of silt were generally

misclassified as either a clay or clayey sand.

Table 7-4. Accuracy of SPT Soil Types

<<<<< CATEGORY FROM SPT TEST >>>>>

CLAYEY SILTY
USCS CATEGORY CLAY SILT SAND SAND SAND TOTALS PERCENT

CLAY 4 0 0 0 0 4 5.8

SILT 2 1 3 0 0 6 8.7

CLAYEY SAND 1 0 2 0 0 3 4.3

SILTY SAND 5 0 15 5 17 42 60.9

SAND 0 0 1 0 13 14 20.3

TOTALS 12 1 21 5 30 69 100.0

PERCENT 17.4 1.4 30.4 7.2 43.5 100.0

These results would suggest that the drillers have difficulty

discriminating silts and silt mixtures, or else a reluctance to use the

silt description. The latter is thought likely, since classification

from silt categories to others never occurred (i.e., only true silts

were called silts, and only true silty sands were called silty sands).
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As a result of the laboratory analysis, the SPT logs should be

acceptable indicators of soil type, except that true silts are likely to

be called clays, and true silty sands are likely to be called either

sand or clayey sand (possibly depending on whether the sand or the silt

matrix is dominant). These possible misclassifications should be kept

in mind when evaluating the results of the discriminant analyses.

Discriminant analysis. Figures 7-5 and 7-6 show the Unified Soil

Classification System categories plotted using the raw and normalized

ECPT measurements, respectively. Note that using the normalized

variables seems to "group" the data a little better. These plots

suggest that discriminating clays from clayey sands, and sands from

silty sands may prove difficult.

Figures 7-7 and 7-8 show the results of the NEIGHBOR analysis on

the laboratory data, using the raw and normalized variables,

respectively. Only the region of the plot containing data points is

shown because extrapolation may be spurious and misleading. The

NEIGHBOR, or nonparametric analysis is very useful as a type of filter

for the data. Where the categories overlap (as in the case of the sand

and silty sand categories), the NEIGHBOR approach permits identification

of the dominant soil type in an area. The two plots did a fairly good

job of classifying the soil, accurately predicting the USCS category

50.7% and 49.3% of the time, respectively (Note that the 1.4% difference

represents 1 observation). This accuracy rate is likely somewhat

biased, however, since the data were used to predict themselves.

The benefits of using the normalized ECPT mec arements can be seen

in these two figures. In Figure 7-7, the raw measurements result in

split categories. Following normalization, the categories group
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together better, as seen in Figure 7-8. This grouping of the data

should improve classification and result in more confident estimates of

the soil types.

The two figures were compared with existing classification charts.

Robertson et al. (Figure 7-3) compared favorably with both figures. The

other three charts (Figures 7-1, 7-2, and 7-4) all seem to be shifted

downward so that clay soils fall in the silt zone, silts in the silty

sand zone, and silty sands in the sand zone. The fact that all three

charts were shifted similarly is not surprising, since they all have

common genealogies.

In order to produce more discrete categories, the DISCRIM procedure

(parametric approach) was applied to the raw and normalized data,

producing accuracy rates of 40.6 and 42%, respectively. Both graphs

were very similar, with the normalized version matching the Robertson et

al. chart fairly well. Figure 7-9 shows this graph.

Discriminant Analysis of Field Measurements

The data set used for evaluating electronic cone penetration test

measurements for soil identification in Florida consisted of 8087

observations, covering some 7 different soil categories and 15 different

soil types. Keeping in mind the significant overlap observed with only

69 observations from the laboratory analysis, the overlap of this large

data set can be expected to be intractable. Figure 7-10 shows the

general trends of the various soil categories, and is a decent statement

of the classification problem. A similar plot of the individual soil

types would be even more bewildering.
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Before discussing the results of the various discriminant analyses,

it is important to remember that the NEIGHBOR approach is best

considered a data filter. Disjointed classifications are expected, but

this approach allows one to observe the dominant trends without fear

that uncontrolled characteristics of the data (such as nonnormal

distributions, unequal within-group covariance matrices, and unequal

group sizes) will cause spurious and misleading results. The DISCRIM

procedure, on the other hand, results in discrete and contiguous

classification rules, which are necessary for rational application to

other data sets.

Table 7-5 summarizes the accuracy of the various discriminant

analyses. Appendix D gives a more detailed breakdown of the results.

Note that the DISCRIM procedure did a poor job of accurately predicting

individual soil types, averaging only 18% accuracy. The NEIGHBOR

approach's better accuracy is artificially high since it is checking

itself. This suggests that discrete identification of soil types (sand

versus shelly sand, for instance) is not possible with only measurements

of qc and fs. Classification by category (of which soil types is a

subcategory) fares somewhat better, with the DISCRIM approach averaging

approximately 40% accuracy. The column labeled "GROUP" is the same as

"CATEGORY," except that the sand, silty sand, and clayey sand categories

have been combined into a single category. The DISCRIM approach

averaged approximately 70% accuracy by group. This significant

improvement reflects the failure of the cone to discriminate between the

various types of sands. This result is not surprising, as seen by the

significant overlap of categories in Figures 7-5 and 7-10.
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Table 7-5. Accurlacy of Discriminant Analysis Approaches

DATA CLASS SOIL TYPE CATEGORY GROUP
SOURCE METHOD NORMALIZED VARIABLE (%) (%) (%)

LAB DISCRIM NO USCSCAT 42.0 76.8

YES USCSCAT 40.6 79.7

NEIGHBOR NO USCSCAT 50.7 73.9

YES USCSCAT 49.3 73.9

FIELD DISCRIM NO SOILTYPE 19.3 32.4 56.9

YES SOILTYPE 17.4 42.4 66.9

NO CATEGORY 39.4 69.1

YES CATEGORY 44.1 71.0

NEIGHBOR NO SOILTYPE 52.5 62.1 87.1

YES SOILTYPE 55.5 65.7 87.1

NO CATEGORY 64.1 86.5

YES CATEGORY 66.5 85.9

Table 7-5 shows that the average improvement in the accuracy rate

due to normalizing the data following Olsen and Malone's method is 2.4%.

Of even more interest is the nature of the spread. Normalizing the data

reduced accuracy at most 1.9% in 4 comparisons, had no effect in 2

comparisons, and improved accuracy as much as 10% in 8 comparisons.

Thus it would seem that normalizing the data is helpful, often

significantly so. This improvement is likely due to the improved

clustering of the data by soil type after it has been normalized. Thus,

while the use of normalized variables may not result in dramatic

improvement in classification accuracy, the benefits are significant

enough to warrant their use.
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Figures 7-11 and 7-12 show the results of using the DISCRIM and the

NEIGHBOR approaches, respectively, on the normalized data classified by

category. In comparing the two figures, it is apparent that the

smallest groups are occupying a disproportionate share of the DISCRIM

graph, at the likely expense of the sand and clay categories. Despite

some disjointedness, the NEIGHBOR approach has done a good job of

identifying quasi-contiguous classification regions. Thus while the

results of the parametric approach are not bad, the nonparametric

approach will be used for evaluating existing classification schemes.

This is a good result, since no assumptions on the data distribution

need to be made to use the nonparametric approach, making any

conclusions on the data "safer."

When Figure 7-12 is compared with existing classification charts,

the Robertson et al. chart seems to fit best. The major differences are

that the organic material intrudes into the clay region a bit too much,

the clayey sands fall mainly in the silt and silty sand region, and the

sands and silty sands are mixed together. Interestingly enough, the

latter two could have been predicted based on the results of the

laboratory analyses. The clayey sands are likely silty sands that have

been misclassified on the SPT logs, and the sands and silty sands have

already been observed to overlap considerably.

Recommended Classification Scheme

The use of ECPT measurements normalized to an overburden pressure

of 96 kPa (1 tsf) is recommended, as accuracy can be enhanced as much as

10% over the use of no normalization. Normalization can be implemented

using Olsen and Malone's approach (36), as applied in Appendix E.
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Based on a careful study of the various existing classification

schemes, the Robertson et al. chart seems the closest to describing

indigenous Florida soils. A few changes are recommended which may

better reflect the results of this study. No changes will be made

outside of the range of the data collected for this study. If soils

falling in these areas are encountered, their analysis can be left to

future research.

Figure 7-13 shows the modified Robertson et al. chart. The major

differences are:

--The category designations have been modified to more closely
represent the Unified Soil Classification System designation. Also,
the "clay" and the "silty clay to clay" regions of the Robertson et
al. chart have been combined into a single "clay" region. The
"sensitive fine grained" zone has been renamed "clay and sensitive
fine grained" since clays have been identified at least in the upper
portion of this zone.

--The sand and silty sand areas have been vertically divided, as
opposed to the horizontal division of Robertson et al., to better
reflect the findings of this study.

--The organic material area has been moved slightly into the clay

area.
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CHAPTER 8

SPT-ECPT CORRELATIONS FOR FLORIDA SOILS

Introduction

The standard penetration test (SPT) is the most common in situ test

in North America, providing the field data for as much as 90% of the

conventional foundation design (45). As a result a considerable body of

experience with the SPT has developed, despite the numerous objections

to the test that were discussed in Chapter 7. To take advantage of this

body of experience, correlations between cone penetration test

measurements and the SPT N-value are desirable.

Numerous past studies relating qc and N have been undertaken,

leading to much confusion due to conflicting results. For fine sands

Meyerhof in 1956 proposed (34)

qc =  0.4 N ....................................................... (8-1)

with qc in MPa (for qc in tsf, multiply the constant by 10.45).

Abdrabbo and Mahmoud found this value to be double their measured value

in Egyptian medium sands, recommending a constant of 0.2 instead (1).

Peck et al. estimated the constant to be 0.19 for silts and

sand/silt/clay mixtures, 0.29-0.38 for fine sands to medium sands, and

0.48-0.57 for coarse sands (38). Meigh and Nixon showed the ratio to

range between 0.25 for silty fine sands up to 1.2+ for coarse gravels.

(34). In 1983 Robertson et al. developed a chart relating qc/N with
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mean grain size, and was published by Seed and De*Alba as shown in

Figure 8-1 (52).

10

g aROBERTSN ET AL.. 1983

8

5 .

- 41

2

I

-2.0 -1.5 -1.0 -0.5 0.0

LOG(MEAN GRAIN SIZE in mm)

Figure 8-1. Variation of q /N Ratio with Mean Grain Size (after
Seed and De Alga, (52)) (Used with permission of ASCE)

The purpose of this phase of the research is to evaluate the

relationship between the SPT N-value and the ECPT measurements, and to

recommend suitable correlations for Florida soils. To accomplish this

objective a data base was established containing measurements from some

20 pairs of SPT and ECPT soundings in close proximity to one another.

These data were then evaluated using exploratory data analysis and

regression analysis to determine the relationships.
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SPT-ECPT Data Base

A large data base was created to evaluate the use of the electronic

cone penetration test for estimating SPT N-values in Florida soils. The

basic approach was to collect ECPT data near available SPTs. The same

data base used in the classification analysis (Chapter 7) was used here,

except that a more stringent distance criteria was employed to better

insure that the two soundings were in nearly identical soils from the

standpoint of strength (and not simply the same "type" of soil). A

maximum separation distance of 6.1 m (20 ft) was selected, and a minimum

separation of 1.2 m (4 ft) was used to minimize radial stress relief in

the boreholes, as recommended by Robertson and Campanella (41). This

data base represented 20 soundings in 7 Florida cities. Table 8-1

summarizes the data base. A more detailed summary is in Appendix A and

Knox (25).

The ECPT data were filtered using the average-value filter

presented in Chapter 3. This was felt to be appropriate since the N-

value represents an average blow count over a 0.3 m (1 ft) increment.

The filtered data were then merged with the corresponding SPT N-value,

producing 606 observations.

In addition to the raw cone penetration test measurements, ECPT

measurements normalized to an effective overburden pressure of 96 kPa (1

tsf) were calculated, using Olsen and Malone's approach as discussed in

Chapter 7 and Appendix E (36). An effective overburden correction was

also determined for the SPT N-value, using the following equation from

Peck, Hanson, and Thornburn (38):

Ncorr = [0.77 log10 (20/p )] N ..................................... (8-2)

cor | v
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Table 8-1. SPT-ECPT Data Base

ECPT-SPT

SITE ECPT # SPT # DISTANCE

Fort Myers Interchange C010D S010A 4.8 m (16 ft)

West Palm 1-95 C015A S015A 4.5 m (15 ft)

C017B S017A 4.5 m (15 ft)

Choctawhatchee Bay C019B S019A 1.2 m (4 ft)

C019G S019C 5.2 m (17 ft)

C019J S019B 4.4 m (14 ft)

C019K S019B 5.0 m (16 ft)

C020B S020A 1.5 m (5 ft)

C021D S021A 4.7 m (15 ft)

White City C022A S022A 7.6 m (25 ft)

C022B S022B 1.6 m (5 ft)

C022C S022C 3.0 m (10 ft)

Orlando Arena C023D S023E 1.5 m (5 ft)

Orlando Hotel C024A S024A 2.2 m (7.4 ft)

C024B S024B 3.1 m (10 ft)

C026A S026A 4.3 m (14 ft)

Jacksonville Coal Terminal C028B S028A See Note

West Bay C030A S030A 2.7 m (9 ft)

C030D S030D 2.9 m (10 ft)

C030F SO30F 5.6 m (18 ft)

Nete: Exact location of Jacksonville SPT undetermined, but believe
distance criteria met. Inspection of data supports belief that
soils were correctly identified.
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where Ncorr is the corrected N-value, and p' is the effective overburden

pressure. An average total unit wqeight of 17.3 kN/m 3 (110 pcf) was

assumed for the soil.

Data Analysis

Exploratory Data Analysis

Exploratory data analysis using the SAS procedure UNIVARIATE was

initially performed to examine the data, which were grouped by soil

categry (organics, clay, silt, clayey sand, silty sand, sand, and

rock). Of particular interest were the SPT N-values and the qc/N

ratios, including the nature of their distributions. If the

distributions were not normally-distributed, then estimates of the mean

and regression analyses would likely not reflect the majority of the

data. Inspection of the data showed the ratios to be approximately log-

normally distributed, with a logarithmic transformation proving

effective in achieving a more symmetric fiequency distribution. Table

8-2 summarizes the results of the exploratory analysis on the qc/N

ratios, calculated using both "raw" measurements, and using ECPT and SPT

measurements corrected for effective cverburden pressure. The means

were determined using logarithmically-transformed variables.

Figure 8-2 compares the results of the exploratory data analysis

with Figure 8-1. The mean grain size, D50, was estimated using

Robertson et al. (45) combined with guidance from Lee et al. (29). The

figure shows the mean value (the hatch mark) plus or minus one standard

deviation (the range of the standard deviation is unbalanced as a result

of the conversion back from a transformed data set). Note that the

average qc/N ratios from this study are significantly higher than the
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Table 8-2. Exploratory Data Analysis of qc/N Ratios

SOIL NUMBER OF MEAN Qc/N NORMALIZED MEAN Qc/N
CATEGORY OBSERVATIONS (Oc in MPa/tsf) (Oc in MPa/tsf)

CLAY 72 0.46/4.77 0.39/4.04

SILT 16 0.26/2.75 0.29/3.07

CLAYEY SAND 114 0.53/5.51 0.43/4.47

SILTY SAND 97 0.55/5.72 0.59/6.15

SAND 303 0.68/7.10 0.71/7.41

ROCK (WEATHERED) 5 0.70/7.28 0.73/7.64

literature would suggest. Also, the scatter in the data was

considerable. The wide scatter in the data could possibly reflect the

problem of repeatability'with the standard penetration test, as

discussed in Chapter 7. Since most of the data came from near-coastal

sites, the higher-than-expected values may also reflect possible

cementation in the soil. It is thought that such cementation would

significantly affect qc since the penetrometer tip is "pushed" into the

ground, whereas the SPT N-value may be much less affected since the

split-barrel sampler is "driven," potentially breaking down the

cementation. Liquifaction of loose sands during SPT driving is also

thought to possibly contribute to low N-values relative to the cone.

Further research is warranted. If the data do indeed reflect

cementation, then the combination of the SPT and the ECPT may be

effective in aiding identification of cemented soils.

Regression Analysis

Most past research has determined qc-N relationships based on soil

type. Since soil type can be estimated from knowledge of the cone
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Figure 8-2. Results of qc/N Ratio Study

resistance and friction ratio, a relationship between these ECPT

measurements and N was sought using linear regression analysis. The

variables were logarithmically-transformed to improve their regression

behavior, and both normalized and nonnormalized measurements were

evaluated. The regression model used was

log 10 (N) = a0  + a1log(qc) + a2log(Rf) ............................. (8-3)

where qc is in MPa. Table 8-3 summarizes the results of the analysis.

Table 8-3 demonstrates that the friction ratio has a negligible

effect on the squared multiple correlation coefficient, R2, and can

safely be omitted. This finding suggests that previous qc/N research

detecting differences in soil types was possibly detecting differences
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Table 8-3. Results of SPT-ECPT Regression Analysis

INDEPENDENT

VARIABLES NORMALIZED a(Q) a(1) a(2) R2  RMSE

log(qc) NO 0.535 0.631 0.38 0.33

YES 0.628 0.500 0.33 0.34

log(qc), log(Rf) NO 0.554 0.662 0.126 0.39 0.33

YES 0.622 0.498 -0.018 0.33 0.34

in the range of the qc value, since a certain soil type tends to occupy

a given range of qc values. Correspondingly, friction resistance

measurements tell little or nothing about predicted N-values.

Table 8-3 also suggests that normalizing the data has a negative

impact on the results. Since both the SPT and ECPT tests are subjected

to the same effective overburden pressure, additional "correction"

apparently only contributes to the data scatter in determining

correlations.

Based on the results of the regression analysis, the SPT-ECPT .mb6

correlation was found to be

N = 3.43 qc0 "631 (qc in MPa) ................................... (8-4)

N = 0.781 qc0 "631 (qc in tsf) ................................... (8-5)

This relationship, of course, will result in lower estimates of N than

would be expected from the literature as a result of the high qc/N

ratios in the data base, as discussed above. While the exact

correlation between cone resistance and SPT N-value may be open to

question, the findings related to the effect of soil type and

normalizing data are thought valid. The approach to analyzing SPT-ECPT

data presented herein should be a suitable model for future research.



167

In evaluating the significance of the regression analysis, the R
2

values in Table 8-3 are admittedly not very high. However, given the

problems with replicating SPT data, low correlation coefficients can be

expected. Table 8-4 shows that the ,'cot mean square error of the

regression analysis, which is an estimate of the standard deviation of

the dependent variable (log(N)), compares very favorably with the

standard deviation of log(N). This is further evidence that grouping

data by soil types is not the best approach when attempting to determine

an SPT-ECPT correlation.

Table 8-4. Descriptive Statistics for log(N) in Units of log(blows/ft)

SOIL NUMBER OF STANDARD
CATEGORY OBSERVATIONS MEAN DEVIATION

CLAY 72 0.68 0.34

SILT 16 0.85 0.02

CLAYEY SAND 114 0.99 0.34

SILTY SAND 97 1.34 0.37

SAND 303 1.07 0.42

ROCK (WEATHERED) 5 1.46 0.17*
The low standard deviation is due to a relatively small number of

contiguous measurements.



CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

Summary and Conclusions

1. The main objective of this research was to evaluate techniques to

improve the application of in situ penetration testing to Florida soils,

with emphasis on the electronic cone penetration test (ECPT).

Specifically, the analysis covered evaluation of spatial variability,

classification of soils using the ECPT, and ECPT correlations with the

standard penetration test (SPT).

2. The ECPT is a relatively fast and inexpensive test for

characterizing geotechnical conditions at a site. The test is best used

to obtain cone resistance measurements (qc), which are reliable and

reproducible measures of soil strength. The design of the subtraction-

type cone makes friction resistance measurements (fs) less dependable,

particularly in weak soils.

3. Two data manipulation techniques were used to improve the response

of the data to statistical analyses, and are recommended for future

work. The first involved a logarithmic (base 10) transformation which

improved the symmetry of the data by spreading out low-magnitude values

and contracting high-magnitude ones. A side benefit was the elimination

of negative values which occasionally result from regression analyses.

The second technique used an average-value filter to smooth out high-

frequency spikes in the ECPT data. This simple filter reduced the data

168
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scatter on the order of 15-20%, while reducing the number of data points

by a factor of 10. This reduction in the number of data points can

'greatly reduce computer analysis time and hardware requirements. The

filter is recommended in applications where the general trend of the

soil is the major item of interest.

4. The term "local variability" was adopted to describe the point-to-

point variability of a measured soil property, encompassing measurement

errors, signal noise, and the innate randomness of soil. The magnitude

of this local variability was estimated for the UF friction-cone

penetrometers using regression techniques. It proved to be a dominant

portion of the variability observed at the two sites in the spatial

variability study employing the ECPT.

5. Several approaches to quantifying the spatial variability of soil

were compared. The deterministic or single-value approaches involved

using the mean, median, and 10% trimmed average to describe a soil

property at a site. The three descriptive statistics were generally

inferior to the other more sophisticated approaches in ability to

predict soil properties.

6. Four distance-weighting methods for handling spatial variability

were evaluated: linear interpolation, two weight functions based on

reciprocal distances, and a random field model. The random field model

was a hybrid model, describing a site's general trends using regression

analysis, and its local trends using a weight function based on an

estimated autocorrelation function. The four distance-weighting methods

were fairly alike in their ability to handle spatial variability and

interpolate between soundings. As a group they were slightly inferior
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on the average to the regression techniques, and the scatter in the

results was somewhat higher because these methods are significantly

influenced by individual soundings.

7. Regression analysis using various regression models proved most

useful for describing the variability of soil properties at a site. The

average error from regression was lower than the other prediction

methods tested, and the scatter in the average error tended to be less.

This reduction in the variability of the error is attributed to the fact

that individual soundings have less impact on the "average" value

predicted by the regression. The regression model should have an

adequate number of terms to describe the general trends, generally up to

order 2 horizontally and Order 2 to 5 or more vertically. The use of a

stepwise regression analysis to generate a suitable model proved useful.

8. The root mean square error (RMSE) obtained from regression analysis

generally estimated the measured error in a prediction within 25%.

Knowledge of the estimated RMSE, coupled with knowledge of the local

variability associated with the in situ test in question, would prove

useful in evaluating a site investigation program and determining

whether additional soundings are needed.

9. A comparison of SPT soil descriptions with laboratory classification

using the Unified Soil Classification System showed that the SPT logs

did not identify silts and silt mixtures well. The silts tended to be

identified as clays, and silty sands were identified as either sands or

clayey sands.
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10. Normalizing ECPT data to an overburden pressure of 96 kPa (1 tsf)

enhanced the classification of soil by tending to "group" like soils

together. The method of normalization is based on Olsen and Malone

(36), and has been adapted for the computer.

11. The results of the discriminant analysis of ECPT data to classify

soils (classified by SPT soil descriptions) showed that the cone can

accurately place soil into general categories approximately 40% of the

time. The general categories were organics, clays, silts, clayey sands,

silty sands, sands, and weathered rock. If the clayey sands, silty

sands, and sands are grouped into a single sand category, the accuracy

improves to approximately 70%. This significant improvement probably

reflects the difficulty the SPT drillers have in accurately describing

mixed sand/silt soils, as discussed above. A slightly modified

Robertson et al. (44) classification chart using normalized ECPT data is

recommended for use in Florida.

12. The SPT-ECPT correlation study produced some unexpected findings.

Average qc/N ratios for the Florida soils were much higher than expected

based on a review of the literature. Possible explanations include the

poor repeatability of the SPT test in general, the possibility (or

probability) of cemented soils, and possible liquefaction of sands

during SPT driving. Regression analysis of the data suggested that the

nature of the SPT-ECPT relationship is more a function of the magnitude

of the cone resistance, and less of the actual soil type. Normalization

of the data for overburden pressure proved detrimental to the

correlation.



172

Recommendations for Future Research

1. An'improved electronic friction-cone penetrometer tip is needed to

accurately measure soil strength ranging from weak to strong. The

subtraction-type penetrometer tip, while a robust design, lacks the

sensitivity required for measuring friction resistance in weak soils. A

sturdy tip which can measure the friction directly, and not by

subtracting two large numbers from one another is required. To avoid

the problems associated with dirt and water.ingress into the electronics

of the tip, an unitized design would be desirable. A starting point for

this effort could be the evaluation of the University of Florida 15-ton

penetrometer tip to determine the source of the apparently poor friction

resistance readings.

2. Expansion and use of the Florida in situ testing data base should

continue. A wealth of information is available by simply collecting and

coding data available from contractors and government agencies, however

use of these data is complicated by the fact that their purposes in

running the tests do not often coincide with the needs of research. An

even greater return on efforts expended could be realized by careful

design of the research program a priori, and coordination with the

testing agencies prior to and throughout the testing program. Such

coordination will prove difficult, however, due to the industry's

emphasis on productivity and economy.

3. Additional work on spatial variability is required, with emphasis on

some type of random field model due to its basis in stochastic theory,

and the attractiveness of a hybrid model which considers both general

site trends and local deviations to the trend. In particular,
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additional study into horizontal autocorrelation seems warranted to

better quantify the lag distances, which are now believed to be fairly

small (tens of feet, maybe, as opposed to hundreds of feet). A testing

program consisting of relatively closely spaced soundings, perhaps in a

grid pattern, would permit more reliable estimation of the

autocorrelation function. Such a grid pattern would also permit

estimation of the testing device's local variability, which is likely to

represent a significant part of the total variability in a site.

4. Expansion of the laboratory data base for classification using the

ECPT is required. While the SPT soil descriptions are not bad, they

must be supplemented with verifiable data to withstand scrutiny.

5. Investigation into the use of pore pressure measurements for soil

identification and soil property correlations should be undertaken.

Such a study should also investigate materials, equipment, and

procedures to reliably and easily obtain interpretable pore pressure

measurements. The present approach of saturating the porous filter

elements by boiling and under vacuum are too cumbersome and uncertain

for field use. Also troublesome are the problems associated with

maintaining saturation above the water table.

6. Additional study into the SPT-ECPT correlations is required. Such a

study should better control the SPT tests to insure consistency and

reliability of these data (as much as is possible with the SPT test).

Also, attempts to obtain truly undisturbed soil samples would help shed

some light on questions relating to possible cementation or liquefaction

effects. Again, a grid pattern of alternating SPTs and ECPTs would be

useful in statistically analyzing the data.
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7. Comparisons between electronic and mechanical cone penetration tests

should be made to evaluate whether or not the two devices make

equivalent measurements of qc and fs. The existing data base may

already contain the data required for such a study.

8. The effects of pile driving on ECPT measurements is another possible

research topic. Presently, only the Sarasota Garage site and the

Choctawhatchee Bay site contain penetrometer soundings taken before and

after pile driving. The White City site may be available in the near

future for "after" soundings. Since such a study would not necessarily

require pile load tests, additional field testing may also be

accomplisi1ed by coordination with a cooperative pile driving contractor.

9. The l4terature should be searched for information relating ECPT

measurements (or penetration testing in general) with the soil property

inputs to the University of Florida's axially-loaded pile capacity

program, TLD (i.e., maximum shear stress, initial shear modulus,

Poisson's ratio, ultimate pile point resistance, and pile-soil

interaction effects). The pile load tests and the ECPTs in the data

base could then be used with TZD to evaluate which of the ECPT-soil

property relationships are best able to predict pile load-deformation

behavior.



APPENDIX A
INDEX TO IN SITU TEST DATA BASE

LAST UPDATE: 3 MAY 1989

NOTE: This index is designed to aid in locating and identifying
information available in the Pile Project Files at the
University of Florida. Missing information may not be
available, or may simply be awaiting input.

LEGEND: GSE - GROUND SURFACE ELEVAIION
GWT - EST. WATFR TABLE (Elevation unless noted otherwise)
TIP IN - PILE IS TIPPED IN (sand, clay, etc.)
TIP EL - PILE TIP ELEVATION
TYPE - TYPE OF PILE

PS - PRESTRESSED
PC - PRECAST
S - STEEL
C - CONCRETE
V - VOIDED
RD - ROUND
SQ - SQUARE

ti - TIPPED IN
pp - PORE PRESSURE
red - FRICTION READING NOT USABLE
yellow - FRICTION READING BORDERLINE
SOILS: S - SAND

M - SILT
C - CLAY
CS - SANDY CLAY
SM - SILTY SAND

etc.

FILES: Prefix P - PILE LOAD TEST
E - ELECTRONIC CONE PENETRATION TEST
M - MECHANICAL CONE PENETRATION TEST
S - STANDARD PENETRATION TEST (BLOW COUNTS)
B - BORING LOGS (F"OM SPT)

Number - SITE IDENTIFICATION NUMBER
SUFFIX A - FIRST TEST OF SERIES

B - SECOND TEST OF SERIES, ETC.
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CONTENTS: SITE #: 001 SITE: APALACHICOLA RIVER BRIDGE-PIER 3
CLAYEY SAND, ti DENSE CLAYEY SAND

SITE #: 002 SITE: APALACHICOLA RIVER BRIDGE-BENT 16
SANDY CLAY, ti CLAYEY SAND

SITE #: 003 SITE: APALACHICOLA BAY BRIDGE-BENT 22
CLAY, ti V.STIFF SANDY CLAY W/SHELL

SITE #: 004 SITE: OVERSTREET BRIDGE-PIER 11
SAND & CLAY, ti SHELLY SAND

SITE #: 005 SITE: ,OVERSTREET BRIDGE-PIER 16
SAND & CLAY, ti CLAYEY SAND & SHELL

SITE #: 006 SITE: SARASOTA GARAGE-SP7
SAND, ti LIMEROCK

SITE #: 007 SITE: SARASOTA GARAGE-SP5
SAND, ti LIMEROCK (probably)

SITE #: 008 SITE: SARASOTA CONDO
SAND & CLAYEY SAND, ti LIMEROCK

SITE #: 009 SITE: SARASOTA - MANATEE LANDFILL
SAND & CLAY, ***NO PLT***

SITE #: 010 SITE: FT MYERS - CONCRETE PILE
probably CLAY, ti CLAY

SITE #: 011 SITE: FT MYERS - STEEL PILE
probably CLAY, ti CEMENTED SHELL

SITE #: 012 SITE: FT MYERS - AIRPORT
probably MARINE CLAYS, ***NO PLT***

SITE #: 013 SITE: PORT ORANGE BENT 19
SHELLY SAND, ti SHELLY SAND

SITE #: 014 SITE: PORT ORANGE BENT 2
SHELLY SAND, ti SHELLY SAND

SITE #: 015 SITE: WEST PALM 1-95 PIER B-4
SAND, ti SAND w/tr SHELL

SITE #: 016 SITE: WEST PALM 1-95 PIER B-6
SAND w/tr SHELL, ti SAND w/tr SHELL

SITE #: 017 SITE: WEST PALM 1-95 PIER B-9
SAND w/tr SHELL, ti SAND w/tr SHELL

SITE #: 018 SITE: WEST PALM 1-95 PIER C-2
SAND & SHELLY SAND, ti SHELLY SAND

SITE #: 019 SITE: CHOCTAWHATCHEE BAY PIER 1
SAND & SILTY SAND, ti SAND

SITE #: 020 SITE: CHOCTAWHATCHEE BAY PIER 4
SAND, SOME CLAY, ti SAND

SITE #: 021 SITE: CHOCTAWHATCHEE BAY FSB 26
probably SAND, SOME CLAY, ti SAND

SITE #: 022 SITE: WHITE CITY
probably SAND, SOME CLAY

SITE #: 023 SITE: ORLANDO ARENA
SAND ON CLAYEY SAND, ti CLAYEY SAND

SITE #: 024 SITE: ORLANDO HOTEL SOUTH
ALTERNATING S & SC, ti SC w/SHELL

SITE #: 025 SITE: ORLANDO HOTEL NORTH
ALTERNATING S & SC, ti SC w/SHELL

SITE #: 026 SITE: ORLANDO HOTEL NORTHEAST
ALTERNATING S & SC, ti SC w/SHELL

SITE #: 027 SITE: JACKSONVILLE COAL TERMINAL B-20
FINE SAND, ti FINE SAND
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SITE #: 028 SITE: JACKSONVILLE COAL TERMINAL B-21
FINE SAND/SILTY SAND, ti FINE SAND

SITE #: 029 SITE: ALACHUA COUNTY LANDFILL ***NO PLT**
SAND

SITE #: 030 SITE: WEST BAY ***NO PLT***
SAND, SILTY SAND, CLAYEY SAND

SITE #: 031 SITE: LAKE WAUBERG ***NO PLT***
LIMITED DATA--CLAY SAMPLE

SITE #: 001 SITE: APALACHICOLA RIVER BRIDGE-PIER 3

PILE: DIA: 24 in TYPE: PS C V
AREA: 463 in^2 SHAPE: SQ

LENGTH: 93.25 ft TIP IN:
GSE: 7.62 ft TIP EL: -85.5 ft
GWT: 0 ft

GEN SOIL:50' CLAYEY SAND / 10'STIFF CLAY / CLAYEY SAND

TEST FILE DATE TEST ID COMMENTS

PLT POOl 860917 DRIVING DATE
ECPT CO01A 880620 APR3-1 lOt/yellow

CO01B 880620 APR3-2 lot
MCPT MOOA 861014 C-P2

MOOIB 861020 C-P3
MOOC 861020 C-P5
MOOlD 861020 C-P6

SPT SOOA 790404 HOLE 1
SOOIB 790404 HOLE 2
SO01C 790404 HOLE 3
SO01D 781108 HOLE 4
SO01E 781108 HOLE 5
SOOIF 781108 HOLE 6
SOO1G 781108 HOLE 7
SO01H HOLE 10 SPATIAL VARIABILITY STUDY
SO011 HOLE 11 SPATIAL VARIABILITY STUDY
SOOlJ HOLE 12 SPATIAL VARIABILITY STUDY
S001K HOLE 13 SPATIAL VARIABILITY STUDY
SOOL HOLE 14 SPATIAL VARIABILITY STUDY
SOO1M HOLE 15 SPATIAL VARIABILITY STUDY
S001N HOLE 16 SPATIAL VARIABILITY STUDY
SO010 HOLE 17 SPATIAL VARIABILITY STUDY
SOOP HOLE 18 SPATIAL VARIABILITY STUDY
SOO1Q HOLE 19 SPATIAL VARIABILITY STUDY
SO01R HOLE 20 SPATIAL VARIABILITY STUDY
SOOlS HOLE 21 SPATIAL VARIABILITY STUDY
SOOIT HOLE 22 SPATIAL VARIABILITY STUDY

B-LOG BOOIA 790404 HOLE I
BOOIB 790404 HOLE 2
BO0IC 790404 HOLE 3
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BOOID 781108 HOLE 4
BOOlE 781108 HOLE 5
BOO1F 781108 HOLE 6
BOOIG 781108 HOLE 7

SITE #: 002 SITE: APALACHICOLA RIVER BRIDGE-FLAT SLAB BENT 16

PILE: DIA: 18 in TYPE: PS C S
AREA: 324 inA2 SHAPE: SQ

LENGTH: 65.23 ft TIP IN:
GSE: 9.18 ft TIP EL: -55.61
GWT: 0 ft

GEN SOIL:50' SANDY CLAY/CLAY OVER 10' SAND OVER CLAYEY SAND

TEST FILE DATE TEST ID COMMENTS

PLT P002 861013 DATE DRIVEN
ECPT CO02A 880621 APRB16 10t

CO02B 880621 ARB16B 10t
MCPT MOO2A 841206 SND #3

MOO2B 841206 SND #2

SITE #: 003 SITE: APALACHICOLA BAY BRIDGE-FLAT SLAB BENT 22

PILE: DIA: 18 in TYPE: PS C S
AREA: 324 in^2 SHAPE: SQ

LENGTH: 72 ft TIP IN:
GSE: 6 ft TIP EL: -60.29
GWT: ft

GEN SOIL:MAYBE 40' CLAY OVER SANDY CLAY W/ SHELL

TEST FILE DATE TEST ID COMMENTS

PLT P003 860917 Sta 316+07 8.5' RT CL
ECPT CO03A 880621 ABB33C 10t

CO03B 880621 ABB33D 10t
MCPT MOO3A 841212 SNO #7 Sta 314+00 10' RT CL

MOO3B 841213 SND #8 Sta 315+00 10' RT CL
MO03C 841213 SND #9 Sta 316+00 10' RT CL
MOO3D 841213 SND #10 Sta 317+00 10' RT CL
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SITE #: 004 SITE: OVERSTREET BRIDGE-PIER 11

PILE: DIA: 24 in TYPE: PS C
AREA: 576 inA2 SHAPE: SQ

LENGTH: 85 ft TIP IN:
GSE: 5.5 ft TIP EL: -58.8 ft
GWT: ft

GEN SOIL:10' S & CS/20' CLAY/15' SAND/IO' STIFF C/SHELLY SAND

TEST FILE DATE TEST ID COMMENTS

PLT P004 870402 STA 303+09
ECPT CO04A 880622 OVP11-1 10t

C004B 880622 OVP11-2 15t/red
C004C 880622 OVP11-3 1St/red
CO04D 880622 OVPII-4 15t/red

SPT S004A 790219 HOLE #1
S004B 790219 HOLE #2

B-LOG BOO4A 790219 HOLE #1
BOO4B 790219 HOLE #2

SITE #: 005 SITE: OVERSTREET BRIDGE-PIER 16

PILE: DIA: 24 in TYPE: PS C
AREA: 576 inA2 SHAPE: SQ

LENGTH: 72 ft TIP IN:
GSE: 5.2 ft TIP EL: -60.4 ft
GWT: ft

GEN SOIL:25' C & SC/IO' CS/10' S/20' SC & C/CS WITH SHELL

TEST FILE DATE TEST X. COMMENTS

PLT P005 870416 bFA 312+49
ECPT CO05A 880622 OVPI6D (#1)/15t/yellow

CO05B 880622 OVP16G (#2)/10t
C005C 880623 OVP16H (#3)/lOt
CO05D 880623 OVP161 (#4)/15t/yellow

SPT SO05A 790219 HOLE #5
S005B 790219 HOLE #6
S005C 790302 HOLE #7
SO05D 790302 HOLE #E-7

B-LOG BOOSA 790219 HOLE #5
BOO5B 790219 HOLE #6
BO05C 790302 HOLE #7
BOO5D 790302 HOLE #E-7



180

SITE #: 006 SITE: SARASOTA HOSP GARAGE-SP7

PILE: DIA: 12 in TYPE: PC CONC
AREA: 144 inA2 SHAPE: SQ

LENGTH: 35 ft TIP IN: ROCK
GSE: 3 ft TIP EL: -22.08 ft
GWT: 0 ft

GEN SOIL:23' FINE SAND ON 5'LAYER OF ROCK (LIMEROCK)

TEST FILE DATE TEST ID COMMENTS

PLT P006 880720 TP6 LOCATION APPROX
P007 880727 TP8 REDRIVEN-LOCATION APPROX

ECPT CO06A 880718 SHSP7A BEFORE PILE/lOt
CO06B 880718 SHSP7B BEFORE PILE/15t
C006C 880719 SHSP7C AFTER PILE/15t
CO06D 880719 SHSP7D AFTER PILE/15t

SPT S006A 880228 SP-7
S006B 880228 SP-6
S006C 880228 SP-1
S0060 880228 SP-10

B-LOG BO06A 880228 SP-7
BOO6B 880228 SP-6
BO06C 880228 SP-1
BOO6D 880228 SP-10

SITE #: 007 SITE: SARASOTA HOSP GARAGE-SP5

PILE: DIA: 12 in TYPE: PC CONC
AREA: 144 inA2 SHAPE: SQ

LENGTH: 35 ft TIP IN: ROCK
GSE: 3 ft TIP EL: -22 ft
GWT: 0 ft

GEN SOIL:28' FINE SAND OVER 4' SILT OVER ROCK

TEST FILE DATE TEST ID COMMENTS

PLT P007 880727 TP8 REDRIVEN-LOCATION APPROX
P006 880720 TP6 LOCATION APPROX

ECPT CO07A 880718 SHSP5A BEFORE PILE/15t
CO07B 880718 SHSP5B BEFORE PILE/15t
C007C 880719 SHSP5C AFTER PILE/15t/red
CO07D 880719 SHSP5E AFTER PILE/15t

SPT S007A 880228 SP-5
S007B 880228 SP-2
S007C 880228 SP-3
SO07D 880228 SP-8
S007E 880228 SP-9

B-LOG BOO7A 880228 SP-5
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BOO7B 880228 SP-2
BO07C 880228 SP-3
BOO7D 880228 SP-8
BOO7E 880228 SP-9

SITE #: 008 SITE: SARASOTA CONDO

PILE: DIA: 14 in TYPE: PC CONC
AREA: 196 in^2 SHAPE: SQ

LENGTH: 20.5 ft TIP IN: ROCK
GSE: 6 ft TIP EL: -9.92 ft
GWT: 3 ft

GEN SOIL:3' F. SAND OVER 5' SC OVER 8' F. SAND OVER ROCK SEAM

TEST FILE DATE TEST ID COMMENTS

PLT P008 880620 TP-3
POO8T 880628 TP-2 TENSION TEST

ECPT CO08A 880719 SCN01 15t
CO08B 880719 SCN02 15t

SPT S008A 850315 SPT9
S008B 850315 SPT8
S008C 850315 SPT7
S008D 850315 SPT6
SOO8E 850315 SPT2

B-LOG BOO8A 850315 SPT9
BOO8B 850315 SPT8
BO08C 850315 SPT7
B0080 850315 SPT6
BOO8E 850315 SPT2

SITE #: 009 SITE: SARASOTA - MANATEE LANDFILL

GEN SOIL:13' FINE SAND OVER 5-18' SC/SILT OVER CS

GWT: 5.5 FT DEPTH

TEST FILE DATE TEST ID COMMENTS

PLT NO PLT
ECPT COO9A 880719 MLF48 15t

COO9B 880719 MLF52 1St/yellow
C009C 880719 MLF54 1St/yellow

SPT S009A 880707 STA 48+00
S009B 880608 STA 52+00
s009C 880707 STA 54+00

B-LOG BOO9A 880707 STA 48+00
BOO9B 880608 STA 52+00
BO09C 880707 STA 54+00
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SITE #: 010 SITE: FT MYERS INTERCHANGE - CONCRETE PILE

PILE: DIA: 14 in TYPE: PS C
AREA: 196 inA2 SHAPE: SQ

LENGTH: 70 ft TIP IN: SILTY CLAY
GSE: 7 ft TIP EL: -60 ft
GWT: 2.5 ft

GEN SOIL:32' S/70' SANDY & SILTY CLAY/5' CEM SC OVER SAND

TEST FILE DATE TEST ID COMMENTS

PLT Polo 880803 TP-1
POIOT 880809 TP-1 TENSION TEST

ECPT C010A 880808 FMC1 15t/red/pp
C010B 880809 FMC2 5t/pp
COlOC 880809 FMC3 5t/red/pp
COOD 880915 FMPKWY 5t/pp
C010E 880915 FM2CM1 5t/red/pp
COOF 880915 FM2CM3 15t/pp
COlOG 880916 FMICM1 15t/lcm per s/pp
CO1OH 880915 FMP5CM 15t/.Scm per s/pp

SPT SOIOA 880727 LAW 84 STA 118+80 70' N
S010B - GREI BR6 STA 120+35

B-LOG B010A 880727 LAW B4 STA 118+80 70' N
BOIOB - GREI BR6 STA 120+35

SITE #: 011 SITE: FT MYERS INTERCHANGE - STEEL PILE

PILE: DIA: 12 in TYPE: STEEL PIPE
AREA: 113 inA2 SHAPE: RD

LENGTH: 120 ft TIP IN: DENSE SAND
GSE: 7 ft TIP EL: -100 ft
GWT: 0 ft

GEN SOIL:32' S/70' SANDY & SILTY CLAY/5' CEM SC OVER SAND

TEST FILE DATE TEST ID COMMENTS

PLT Poll 880813 TP-2
ECPT CO1OA 880808 FMC! see P010/red

COOB 880809 FMC2 see Polo
ColoC 880809 FMC3 see P010/red
C010D 880915 FMPKWY 5t/see P010
C010E 880915 FM2CMl 5t/red/see P010
C01OF 880915 FM2CM3 15t/see P010
COlOG 880916 FM1CMI 15t/lcm per s/see P010
COOH 880915 FMP5CM 15t/.5cm per s/see P010

SPT SOOA 880727 LAW B4 STA 118+80 70' N
S010B - GREI BR6 STA 120+35

B-LOG BOOA 880727 LAW B4 STA 118+80 70' N
BOIOB - GREI BR6 STA 120+35
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SITE #: 012 SITE: FT MYERS - AIRPORT

GEN SOIL:SAND, SILTY CLAY/CLAYEY SILT, LIMEROCK
GWT: 5 FT DEPTH

TEST FILE DATE TEST ID COMMENTS

PLT N/A
ECPT C012A 880810 FMAPB2A 15t/pp

C012B 880916 FMAPB3 15t/yellow/pp
SPT S012A B-2

S012B B-3
B-LOG BO12A B-2

B012B B-3

SITE #: 013 SITE: PORT ORANGE BENT 19

PILE: DIA: 18 in TYPE:
AREA: 324 in^2 SHAPE: SQ

LENGTH: 34.25 ft TIP IN: SHELLY SAND
GSE: 4.2 ft TIP EL: -26.68 ft
GWT: ft

GEN SOIL:SHELLY SAND, ti SHELLY SAND

TEST FILE DATE TEST ID COMMENTS

PLT P013 880212 Sta 226+01 44' RT/1ST CYCL
ECPT C013A 871021 FDOT 226+01 26' LT

(Note:0.25 m INCREMENTS)
C013B 871130 UF DATA

MCPT MO13A 850805 SND #7 Sta 225+41 18' RT
MO13B 850807 SND #6 Sta 225+01 18' RT

SITE #: 014 SITE: PORT ORANGE BENT 2

PILE: DIA: 18 in TYPE:
AREA: 324 in^2 SHAPE: SQ

LENGTH: 32.78 ft TIP IN: SHELLY SAND
GSE: 6.4 ft TIP EL: -23.61 ft
GWT: ft

GEN SOIL:SHELLY SAND, ti SHELLY SAND

TEST FILE DATE TEST ID COMMENTS

PLT P014 880212 Sta 221+25 11' RT
ECPT C014A 871022 FDOT 221+53 27' LT

(Note:0.25 m INCREMENTS)

MCPT MO14A 850805 SND #1 Sta 220+85 70' LT
MO14B 850709 SND #2 Sta 222+00 18' RT

SPT S014A 850730 BORING #lSta 221+90 20' LT

B-LOG BO14A 850730 BORING #lSta 221+90 20' LT



184

SITE #: 0i5 SITE: WEST PALM 1-95 PIER B-4

PILE: DIA: 18 in TYPE: PC CONC
AREA: 324 in^2 SHAPE: SQ

LENGTH: 45.3 ft TIP IN: SAND (tr SHELL)
GSE: 18 ft TIP EL: -34.6 ft
GWT: 6 ft

GEN SOIL:SAND, ti SAND W/ TRACE SHELL

TEST FILE DATE TEST ID COMMENTS

PLT P015 850718
ECPT C015A 880913 WPB4A lot

C015B 880913 WPB4B lot
C015C 880914 WPB4C 15t/pp

SPT SO15A 810812 BORING #1
B-LOG BO15A 810812 BORING #1

SITE #: 016 SITE: WEST PALM 1-95 PIER B-6

PILE: DIA: 18 in TYPE: PC CONC
AREA: 324 in^2 SHAPE: SQ

LENGTH: 57.8 ft TIP IN: SAND w/ tr SHELL
GSE: 33.5 ft TIP EL: -30 ft
GWT: 8 ft

GEN SOIL:SAND w/ tr SHELL, ti SAND w/ tr SHELL

TEST FILE DATE TEST ID COMMENTS

PLT **P016** 850802 PLT NO GOOD-NOT ENTERED
ECPT C016A 880913 WPB6A 15t/pp

C016B 880913 WPB6B2 15t/pp
C016C 880913 WPB6C1 lot

SPT SO16A 810812 BORING #3
B-LOG BO16A 810812 BORING #3

SITE #: 017 SITE: WEST PALM 1-95 PIER B-9

PILE: DIA: 18 in TYPE: PC CONC
AREA: 324 in^2 SHAPE: SQ

LENGTH: 39.5 ft TIP IN: SAND w/ tr SHELL
GSE: 25 ft TIP EL: -30.8 ft
GWT: 2 ft

GEN SOIL:SAND w/ tr SHELL, ti SAND w/ tr SHELL

TEST FILE DATE TEST ID COMMENTS

PLT P017 850727
ECPT C017A 880914 WPB9A 15t/pp
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C017B 880914 WPB9B2 10t
SPT SO7A 810812 BORING #5
B-LOG BO17A 810812 BORING #5

SITE #: 018 SITE: WEST PALM 1-95 PIER C-2

PILE: DIA: 18 in TYPE: PC CONC
AREA: 324 in^2 SHAPE: SQ

LENGTH: 44 ft TIP IN: SHELLY SAND
GSE: 10 ft TIP EL: -32.8 ft
GWT: 4.8 ft

GEN SOIL:SAND & SHELLY SAND, ti SHELLY SAND

TEST FILE DATE TEST ID COMMENTS

PLT P018 850809 STA 1982+49 39' RT CL
MCPT MO18A 800611 SND #1

MO18B 800610 SND #4
SPT S018A 800527 BOR #1
B-LOG BO18A 800527 BOR #1

SITE #: 019 SITE: CHOCTAWHATCHEE BAY PIER I

PILE: DIA: 24 in TYPE: PC CONC
AREA: 576 in^2 SHAPE: SQ

LENGTH: 57 ft TIP IN: SAND
GSE: 6 ft TIP EL: ft
GWT: 0 ft

GEN SOIL:SAND & SILTY SAND, ti SAND

TEST FILE DATE TEST ID COMMENTS

PLT P019 STA 115+08 60.5' LT CL EXIST
ECPT C019A 880927 CBP1A 10t/pp/STA 115+02 50' LT

C019B 880927 CBP1B lOt/pp/STA 114+00 25' LT
CO19C 890110 CBP1C 10t/pp (AFTER)/STA 115+28
C019D 890110 CB111 10t/pp/STA 111+00 25' LT
C019E 890110 CB1450 STA 114+50 37' LT/lOt
C019F 890111 CB1600 STA 116+00 42.5' LT/lOt
C019G 890111 CB1700 STA 117+00 43' LT/lOt
C019H 890111 CB1800 STA 118+00 40.5' LT/lOt
C0191 890111 CB1900 STA 119+00 43' LT/lOt
C019J 890301 FDOT STA 111+06 33' LT/lOt
C019K 890302 FDOT STA 110+88 31' LT/IOt
C019L 880928 STA 119+46.5 38' LT/IOt
C019M 880928 STA 114+78 31' LT/IOt

MCPT MO9A 850205 SND #15 STA 115+02 22' LT
SPT S019A 850200 BOR #2 STA 114+00 21'LT

S019B 850200 BOR #1 STA 111+00 20' LT
S019C 850200 BOR #3 STA 117+00 28' LT
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B-LOG B019A 850200 BOR #2 STA 114+00 21'LT
B019B 850200 BOR #1 STA 111+00 20' LT
B019C 850200 BOR #3 STA 117+00 28' LT

SITE #: 020 SITE: CHOCTAWHATCHEE BAY PIER 4

PILE: DIA: 30 in TYPE: PC CONC
AREA: 900 inA2 SHAPE: SQ

LENGTH: 90 ft TIP IN: SAND
GSE: 6 ft TIP EL: ft
GWT: 0 ft

GEN SOIL:SAND, SOME CLAY, ti SAND

TEST FILE DATE TEST ID COMMENTS

PLT P020 STA 119+28 50' LT CL EXIST
ECPT C020A 880927 CBP4A lOt/pp/STA 119+28 50' LT

C020B 880927 CBP4B lOt/pp/STA 120+00 38' LT
MCPT MO20A 850206 SND #17 STA 119+00 22' LT

M020B 850604 SND #47 STA 120+00 22' LT
SPT S020A 850300 BOR #4 STA 120+00 33' LT
B-LOG BO20A 850300 BOR #4 STA 120+00 33' LT

SITE #: 021 SITE: CHOCTAWHATCHEE BAY FSB 26

PILE: DIA: 24 in TYPE: PC CONC
AREA: 576 in^2 SHAPE: SQ

LENGTH: 84 ft TIP IN: SAND
GSE: 6 ft TIP EL: ft
GWT: 0 ft

GEN SOIL:probably SAND, SOME CLAY, ti SAND

TEST FILE DATE TEST ID COMMENTS

PLT P021 STA 183+16 50' LT CL EXIST
ECPT C021A 880928 CBF26B 10t/pp/Sta 183+16 26'LT

C021B 880928 CBF26D lOt/pp/Sta 182+61 26.5'LT
C021C 890110 CBF26F pp/lOt/STA 182+99 26' LT

AFTER PILE DRIVING
C021D 890111 CB8058 pp/1Ot/STA 180+58 27' LT

MCPT M021A SNO #2 Sta 183+00 30' LT
MO21B 850213 SND #21 Sta 182+00 22' LT
M021C 850213 SND #22 STA 184+00 22' LT

SPT S021A 850200 BOR #27 STA 180+50 40' LT
B-LOG BO21A 850200 BOR #27 STA 180+50 40' LT
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SITE #: 0Z SITE: WHITE CITY

PILE: DIA: in TYPE:
AREA: in^2 SHAPE:

LENGTH: ft TIP IN:
GSE: ft TIP EL: ft
GWT: DEPTH 8 ft

GEN SOIL:probably SAND, SOME CLAY

TEST FILE DATE TEST ID COMMENTS

ECPT C022A 880929 WCB2A STA 7+95 30.5' RT CL EXIST
C022B 880929 WCBIOA STA 22+25 67' RT CL EXIST/
C022C 880929 WCB11A STA 23+85 65'RT CL EXIST/i

MCr-T M022A 851219 SND #16 STA 8+00 65' RT CL EXIST
M022B 851211 SND #2 STA 22+18 65' RT CL EXIST
M022C 851211 SND #4 STA 24+00 65' RT CL EXIST

SPT S022A 851114 BOR #2 STA 8+00 55' RT CL EXIST
S022B 851114 BOR #10 STA 22+30 65' RT CL EXIST
S022C 851220 BOR #11 STA 23+91 73' RT CL EXIST

B-LOG B022A 851114 BOR #2 STA 8+00 55' RT CL EXIST
B022B 851114 BOR #10 STA 22+30 65' RT CL EXIST
B022C 851220 BOR #11 STA 23+91 73' RT CL EXIST

SITE #: 023 SITE: ORLANDO ARENA *****DEPTH IN FEET*****

PILE: DIA: 14 in TYPE: PC CONC
AREA: 196 in^2 SHAPE: SQ

LENGTH: 94 ft TIP IN: CLAYEY SAND
GSE: 98 ft TIP EL: 4 ft
GWT: 83 ft

GEN SOIL:43' SAND OVER CLAYEY SAND

TEST FILE DATE TEST ID COMMENTS

PLT P023 870118 TP6 PREDRILLED TO 48'
P023T 870121 TP6 TENSION TEST

ECPT C023A 861208 CS-3A pp/***DEPTH IN FT***
C023B 861208 CS-4 ***DEPTH IN FT***
C023C 861208 CS-8 ***DEPTH IN FT***
C023D 861208 CS-9 ***DEPTH IN FT***

SPT S023A 861100 TB-2
S023B 861100 TB-3
S023C 861100 TB-12
S023D 861100 TB-14
S023E 861100 TB-15

B-LOG B023A 861100 TB-2
B023B 861100 TB-3
B023C 861100 TB-12
B023D 861100 TB-14
B023E 861100 TB-15
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SITE #: 024 SITE: ORLANDO HOTEL SOUTH *****DEPTH IN FT*****

PILE: DIA: 14 in TYPE: PC CONC
AREA: 196 inA2 SHAPE: SQ

LENGTH: 120 ft TIP IN: CLAYEY SAND w/SHE
GSE: say 0 ft TIP EL: -96.25 ft
GWT: -11.5 ft

GEN SOIL:ALTERNATING SAND AND CLAYEY SAND LAYERS

TEST FILE DATE TEST ID COMMENTS

PLT P024 870924 TP-I PREDRILLED 20'/TOP 5'
OVERBURDEN REMOVED

ECPT C024A 870916 CP-1 pp

C024B 870927 CP-7 pp
SPT S024A 870200 TB-2

S024B 870200 TB-1
B-LOG B024A 870200 TB-2

B024B 870200 TB-i

SITE #: 025 SITE: ORLANDO HOTEL NORTH *****DEPTH IN FEET****

PILE: DIA: 14 in TYPE: PC CONC
AREA: 196 inA2 SHAPE: SQ

LENGTH: 120 ft TIP IN: CLAYEY SAND w/SHE
GSE: say 0 ft TIP EL: -94.75 ft
GWT: -11.5 ft

GEN SOIL:ALTERNATING SAND AND CLAYEY SAND LAYERS

TEST FILE DATE TEST ID COMMENTS

PLT P025 870930 TP-H PREDRILLED 20'/TOP 5'
OVERBURDEN REMOVED

ECPT C025A 870917 CP-2 pp

SPT S026A 870200 TB-3
B-LOG B026A 870200 TB-3

SITE #: 026 SITE: ORLANDO HOTEL NORTHEAST ****DEPTH IN FEET

PILE: DIA: 14 in TYPE: PC CONC
AREA: 196 inA2 SHAPE: SQ

LENGTH: 75 ft TIP IN: CLAYEY SAND w/SHE
GSE: say 0 ft TIP EL: -74 ft
GWT: -11.5 ft

GEN SOIL:ALTERNATING SAND AND CLAYEY SAND LAYERS

TEST FILE DATE DIST(ft) DIR COMMENTS

PLT P026 871002 0 0 TP-A/PREDRILLED 1
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ECPT C026A 870920 7 190 CP-5A/pp
SPT S026A 870200 20.5 210 TB-3
B-LOG B026A 870200 20.5 210 TB-3

SITE #: 027 SITE: JACKSONVILLE COAL TERMINAL B-20

PILE: DIA: 20 in TYPE: PC CONC
AREA: 400 in^2 SHAPE: SQ

LENGTH: 55 ft TIP IN: FINE SAND
GSE: 6 ft TIP EL: -40.2 ft
GWT: 0 ft

GEN SOIL:FINE SAND

TEST FILE DATE TEST ID COMMENTS

PLT P027 870503 LOCATION APPROXIMATE
P027T 870506 TENSION TEST

ECPT C027A 881107 JXB20A lOt/pp/yellow
C027B 881107 JXB20B lOt/pp/yellow
C027C 881107 JXB20C 15t/pp

SPT S027A 791002 LOCATION APPROXIMATE
B-LOG B027A 791002 LOCATION APPROXIMATE

SITE #: 028 SITE: JACKSONVILLE COAL TERMINAL B-21

PILE: DIA: 20 in TYPE: PC CONC
AREA: 400 inA2 SHAPE: SQ

LENGTH: 40 ft TIP IN: FINE SAND
GSE: 13 ft TIP EL: -23.4 ft
GWT: 3 ft

GEN SOIL:FINE SAND & SILTY SAND

TEST FILE DATE TEST ID COMMENTS

PLT P028 870429 LOCATION ESTIMATED
P028T 870501 TENSION TEST

ECPT C028A 881107 JXB21A 15t/pp/yellow
C028B 881107 JXB21B 10t/pp

SPT S028A 791220 LOCATION ESTIMATED
B-LOG B028A 791220 LOCATION ESTIMATED

SITE #: 029 SITE: ALACHUA COUNTY LANDFILL ***NO PLT***

GEN SOIL:SAND

TEST FILE DATE TEST ID COMMENTS

ECPT C029A 880600 DMTSPT3 10t
C029B 880600 DMTCPT3 10t
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C029C 880600 DMT4 lot
C029D 880600 DMT5 lot
-C029E 880600 DMT6 lot
C029F 880600 DMT7 lot
C029G 880600 DMT9 lot

SPT S029A 870616 R3
S029B 870615 RI

B-LOG B029A 870616 R3
B029B 870615 Ri

SITE #: 030 SITE: WEST BAY ***NO PLT***

GEN SOIL:SAND, SILTY SAND, CLAYEY SAND

TEST FILE DATE TEST ID COMMENTS

ECPT C030A 880500 STA 284+00 18' LT
C030B 880500 STA 285+50 18' LT
C030C 880500 STA 288+95 23' LT
C030D 880500 STA 303+96.5 52' LT
C030E 880500 STA 306+12 42' LT
C030F 880500 STA 309+71.5 CL

SPT S030A 851200 STA 284+00 27' LT
S030B 851200 STA 285+50 20' LT
S030C 851200 STA 289+00 46' LT
S030D 851200 STA 304+00 43' LT
S030E 851200 STA 306+00 19' LT
S030F 851200 STA 309+75 18' LT

SITE #: 031 SITE: LAKE WAUBERG ***NO PLT***

GEN SOIL:SAND, CLAY

TEST FILE DATE TEST ID COMMENTS

ECPT C031A DMT20 CORRELATE WITH LAB SAMPLE



APPENDIX B
PENETROMETER TIP MEASUREMENTS AND UNEQUAL END AREA CALCULATIONS

RRER TOP (of sleeve)

= - - SLEEVE 0.0.

LU

LU

ca SHAFT

AREA BOTTOM (of sleeve)

CONE

Definition of Penetrometer Tip Measurements

Example (10-ton penetrometer tip)

qc Correction = P (Acone - Ashaft) / (Acone)

= P (9.909 cm2 - 6.492 cm2) / 9.909 cm2

= 0.345 P (0.1 MPa/bar) = 0.034 MPa/bar

fs Correction = P (Abottom - Atop) / (Asleeve)

= P (3.355 cm2  1.863 cm2 ) / 148.5 cm
2

= 0.01005 P (100 kPa/bar) = 1.005 kPa/bar
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Data

5-TON 10-TON 15-TON

Cone diameter 3.552 cm 3.552 cm 4.351 cm

Cone Area 9.909 cm2 9.909 cm2 14.869 cm2

Shaft Diameter 2.490 cm 2.875 cm 3.590 cm

Shaft Area 4.870 cm2 6.492 cm2 10.122 cm2

Area bottom 5.000 cm2 3.355 cm2 4.676 cm2

Area top 1.859 cm2 1.863 cm2 3.507 cm2

Sleeve Height 13.283 cm 13.282 cm 10.885 cm

Sleeve OD 3.558 cm 3.559 cm 4.348 cm

Sleeve Area 148.475 cm2 148.505 cm2 148.685 cm2

Pressure Effect

qc (per bar) 0.051 MPa 0.034 MPa 0.032 MPa

fs (per bar) 2.116 kPa 1.005 kPa 0.786 kPa



APPENDIX C
SUMMARY OF LABORATORY CLASSIFICATION OF SOILS

DEPTH qc fs SOIL

SITE (m (MPa) (KPa) USCS 1  TYPE2  CATEGORY3

CO9B 2.00 3.00 0 S 9 S

C019B 6.00 0.33 0 T 14 C

C019B 9.00 0.37 0 T 7 M

C019B 13.00 0.68 0 S 19 S

C019B 16.00 7.76 13 S 19 S

C019B 21.00 1.42 13 C 3 C

C019B 23.00 1.35 16 C 3 C

CO19B 35.50 2.56 30 T 16 U

C019D 1.50 7.74 2 S 9 S

C019D 3.00 3.47 3 S 9 S

C019D 8.00 2.10 0 S 7 M

C019D 17.00 1.16 12 C 3 C

C019D 22.50 9.93 6 T 29 S

C0190 28.70 10.46 24 T 14 C

C0210 3.00 3.52 17 S 9 S

C021D 9.80 5.70 27 S 9 S

C021D 18.30 18.70 101 S 9 S

C021D 24.25 24.93 143 T 16 U

C022A 9.5 2.45 0 T 9 S

C022A 11.0 0.59 0 C 3 C
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C022A 15.5 35.75 134 T 9 S

C022A 17.2 36.12 81 T 9 S

C022A 21.0 8.06 39 T 9 S

C022A 27.0 9.35 54 S 9 S

C022A 30.0 13.16 62 S 9 S

C022A 34.5 12.68 47 T 17 U

C022A 35.5 7.40 102 T 17 U

C022B 2.30 2.65 171 T 3 C

C022B 11.50 24.92 179 T 9 S

C022B 15.50 30.10 85 S 9 S

C022B 17.50 4.90 31 T 9 S

C022B 19.50 7.19 28 T 9 S

C022C 4.80 4.55 0 C 9 S

C022C 9.00 28.02 83 T 9 S

C022C 12.00 31.51 114 T 9 S

C022C 15.50 1.24 26 T 14 C

C022C 20.00 12.77 61 T 9 S

C022C 26.00 6.65 17 T 9 S

C030E 2.00 5.48 32 S 9 S.

C030E 11.00 23.66 150 S 9 S

C030E 16.00 19.64 62 S 16 U

C030E 27.00 0.43 9 T 16 U

C030E 32.00 4.28 35 T 16 U

C030B 7.50 6.94 20 S 9 S

C030B 10.50 6.47 20 S 9 S

C030C 7.50 1.80 3 T 16 U

C030C 25.00 5.55 3 T 17 U
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C030C 33.00 4.85 16 T 16 U

C030A 1.00 9.01 68 T 9 S

C030A 6.00 2.00 11 T 9 S

C030A 8.00 2.30 6 T 9 S

C030A 11.00 2.32 2 T 9 S

C030A 13.00 0.49 3 T 14 C

C030D 10.00 8.74 60 T 16 U

C030D 25.00 6.53 8 T 17 U

C030D 30.00 4.75 16 T 16 U

C030D 35.00 5.86 15 T 16 U

C030F 7.00 6.66 40 T 9 S

C030F 11.00 9.07 40 T 9 S

C030F 23.00 3.83 24 M 17 U

C030F 30.00 3.73 13 M 17 U

C030F 34.00 5.37 13 M 17 U

C024A 18.59 1.57 19.6 U 16 U

C024B 18.29 1.18 0 U 16 U

C026A 15.54 0.59 29.4 U 16 U

C006A 6.10 12.37 49 T 8 T

CO06B 6.10 9.56 57 T 8 T

CO07A 0.61 3.55 7 T 8 T

CO07A 2.44 8.07 35 T 8 T

CO07A 6.10 11.26 67 T 8 T

CO08A 4.57 23.01 134 T 16 U

CO08B 1.52 5.15 107 T 14 C

CO08B 4.57 7.22 103 T 16 U

C012B 20.27 2.35 69 M 5 M
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C012B 14.17 1.31 21 U 4 C

C031A 2.05 3.94 222 C 14 C

C031A 2.25 4.33 260 M 3 C

C031A 2.50 3.52 202 M 3 C

Notes:
1. Classification based on the Unified Soil Classification System.

Applicable references include ASTM Standard D 2487 (2) and U.S. Army
Corps of Engineers Manual EM 1110-2-1906 (61).

2. Soil types based on placement of soil description from SPT logs
into one of 30 categories (Soil types #1 through #12 taken from
Robertson et al. (44) classification chart):

1. Sensitive fine grained 15. Sandy clay with shell
2. Organic material 16. Clayey sand
3. Clay 17. Clayey sand with shell
4. Silty clay to clay 18. Clayey sand with rock
5. Clayey silt to silty clay 19. Sand with organics
6. Sandy silt to clayey silt 20. Clay with organics
7. Silty sand to sandy silt 21. Clay with shell
8. Sand to silty sand 22. Rock or limestone
9. Sand 23. Fragmented or weathered rock
10. Gravelly sand to sand 24. Fine sand with rock
11. Very stiff fine grained-- 25. Sandy silt with rock

overconsolidated or cemented 26. Sandy silt with shell
12. Sand to clayey sand-- 27. Silty sand with shell

overconsolidated or cemented 28. Sandy silty clay
13. Shelly sand 29. Cemented sand
14. Sandy clay 30. Cemented clayey sand

3. Categories group similar soil types:

0 Organic material (Soil type 2)
C Clay (Soil types 1, 3, 4, 11, 14, 15, 20, 21, 28)
M Silt (Soil types 5, 6, 7, 25, 26)
U Clayey sand (Soil types 16, 17, 18, 30)
T Silty sand (Soil types 8, 27)
S Sand (Soil types 9, 10, 12, 13, 19, 24, 29)
R Rock (Soil types 22, 23)



APPENDIX D
DISCRIMINANT ANALYSIS CLASSIFICATION SUMMARIES

PROCEDURE DISCRIM CLASSIFIED BY: USCS CATEGORY DATA: LAB

COUNT

TO C M S T U TOTALS
FROM
C 0 1 0 0 3 4
M 1 2 1 2 0 6
S 0 0 10 4 0 14
T 2 5 17 15 3 42
U 1 0 0 0 2 3

TOTALS 4 8 28 21 8 69

PERCENTAGE

TO C M S T U TOTALS
FROM
C 0.0 25.0 0.0 0.0 75.0 100.0
M 16.7 33.3 16.7 33.3 0.0 100.0
S 0.0 0.0 71.4 28.6 0.0 100.0
T 4.8 11.9 40.5 35.7 7.1 100.0
U 33.3 0.0 0.0 0.0 66.7 100.0
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PROCEDURE DISCRIM CLASSIFIED BY: USCS CATEGORY DATA: NORMAL LAB

COUNT

TO C M S T U TOTALS
FROM

C 0 1 0 0 3 4
M 1 3 0 2 0 6
S 0 0 10 4 0 14
T 2 4 20 13 3 42
U 1 0 0 0 2 3

TOTALS 4 8 30 19 8 69

PERCENTAGE

TO C M S T U TOTALS
FROM

C 0.0 25.0 0.0 0.0 75.0 100.0
M 16.7 50.0 0.0 33.3 0.0 100.0
S 0.0 0.0 71.4 28.6 0.0 100.0
T 4.8 9.5 47.6 31.0 7.1 100.0
U 33.3 0.0 0.0 0.0 66.7 100.0

PROCEDURE NEIGHBOR CLASSIFIED BY: USCS CATEGORY DATA: LAB

COUNT

TO C M S T U TOTALS
FROM

C 3 1 0 0 0 4
M 0 6 0 0 0 6
S 0 2 7 5 0 14
T 2 11 8 18 3 42
U 2 0 0 0 1 3

TOTALS 7 20 15 23 4 69

PERCENTAGE

TO C M S T U TOTALS
FROM
C 75.0 25.0 0.0 0.0 0.0 100.0
M 0.0 100.0 0.0 0.0 0.0 100.0
S 0.0 14.3 50.0 35.7 0.0 100.0
T 4.8 26.2 19.0 42.9 7.1 100.0
U 66.7 0.0 0.0 0.0 33.3 100.0



199

PROCEDURE NEIGHBOR CLASSIFIED BY: USCS CATEGORY DATA: NORMAL LAB

COUNT

TO C M S T U TOTALS
FROM

C 3 1 0 0 0 4
M 0 6 0 0 0 6
S 0 0 10 4 0 14
T 3 11 12 15 1 42
U 3 0 0 0 0 3

TOTALS 9 18 22 19 1 69

PERCENTAGE

TO C M S T U TOTALS
FROM
C 75.0 25.0 0.0 0.0 0.0 100.0
M 0.0 100.0 0.0 0.0 0.0 100.0
S 0.0 0.0 71.4 28.6 0.0 100.0
T 7.1 26.2 28.6 35.7 2.4 100.0
U 100.0 0.0 0.0 0.0 0.0 100.0
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PROCEDURE DISCRIM CLASSIFIED BY: SOIL TYPE DATA: FIELD

COUNT

TO CATEGORY 0 C M T S S C
TO SOIL 2 3 7 8 9 13 14

FROM SOIL #
0 2 20 5 0 0 0 0 0
C 3 14 282 45 5 4 0 9
SM-MS 7 0 10 106 1 5 2 9
S-SM 8 0 16 6 464 255 110 110
S 9 6 59 120 341 287 211 318
Ssh 13 0 7 10 17 13 6 6
CS 14 1 82 30 10 10 16 27
CSsh 15 0 1 0 1 0 0 0
SC 16 5 60 41 33 74 14 133
SCsh 17 0 2 0 13 15 5 96
So 19 0 0 2 3 6 4 2
Csh 21 0 0 1 0 0 0 0
WRk 23 0 0 0 8 1 0 0
Scem 29 0 9 16 10 8 2 8
SCcem 30 0 0 9 0 0 1 45

TOTALS 46 533 386 906 678 371 763

TO CAT C U U S C R S U TOTALS
TO SOIL 15 16 17 19 21 23 29 30

FROM SOIL
2 0 0 0 0 1 0 0 0 26
3 8 0 0 0 0 0 1 0 368
7 5 0 2 0 10 0 0 0 150
8 550 16 53 9 1 420 60 28 2098
9 169 121 131 58 53 589 273 188 2924

13 37 1 7 2 10 16 32 4 168
14 34 12 7 15 31 4 6 13 298
15 4 0 0 0 0 4 0 0 10
16 152 112 36 39 6 1 265 76 1047
17 64 84 26 31 0 4 80 61 481
19 1 0 0 0 1 0 6 1 26
21 0 0 0 0 17 0 0 0 18
23 1 0 0 0 0 28 5 0 43
29 10 7 1 6 0 53 133 6 269
30 0 20 0 10 0 0 29 47 161

TOTALS 1035 373 263 170 130 1119 890 424 8087
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PROCEDURE DISCRIM CLASSIFIED BY: SOIL TYPE DATA: FIELD

PERCENTAGE

TO CATEGORY 0 C M T S S C
TO SOIL 2 3 7 8 9 13 14

FROM SOIL #
0 2 76.9 19.2 0.0 0.0 0.0 0.0 0.0
C 3 3.8 76.6 12.2 1.4 1.1 0.0 2.4
SM-MS 7 0.0 6.7 70.7 0.7 3.3 1.3 6.0
S-SM 8 0.0 0.8 0.3 22.1 12.2 5.2 5.2
S 9 0.2 2.0 4.1 11.7 9.8 7.2 10.9
Ssh 13 0.0 4.2 6.0 10.1 7.7 3.6 3.6
CS 14 0.3 27.5 10.1 3.4 3.4 5.4 9.1
CSsh 15 0.0 10.0 0.0 10.0 0.0 0.0 0.0
SC 16 0.5 5.7 3.9 3.2 7.1 1.3 12.7
SCsh 17 0.0 0.4 0.0 2.7 3.1 1.0 20.0
So 19 0.0 0.0 7.7 11.5 23.1 15.4 7.7
Csh 21 0.0 0.0 5.6 0.0 0.0 0.0 0.0
WRk 23 0.0 0.0 0.0 18.6 2.3 0.0 0.0
Scem 29 0.0 3.3 5.9 3.7 3.0 0.7 3.0
SCcem 30 0.0 0.0 5.6 0.0 0.0 0.6 28.0

TO CAT C U U S C R S U TOTALS
TO SOIL 15 16 17 19 21 23 29 30

FROM SOIL
2 0.0 0.0 0.0 0.0 3.8 0.0 0.0 0.0 100.0
3 2.2 0.0 0.0 0.0 0.0 0.0 0.3 0.0 100.0
7 3.3 0.0 1.3 0.0 6.7 0.0 0.0 0.0 100.0
8 26.2 0.8 2.5 0.4 0.0 20.0 2.9 1.3 100.0
9 5.8 4.1 4.5 2.0 1.8 20.1 9.3 6.4 100.0

13 22.0 0.6 4.2 1.2 6.0 9.5 19.0 2.4 100.0
14 11.4 4.0 2.3 5.0 10.4 1.3 2.0 4.4 100.0
15 40.0 0.0 0.0 0.0 0.0 40.0 0.0 0.0 100.0
16 14.5 10.7 3.4 3.7 0.6 0.1 25.3 7.3 100.0
17 13.3 17.5 5.4 6.4 0.0 0.8 16.6 12.7 100.0
19 3.8 0.0 0.0 0.0 3.8 0.0 23.1 3.8 100.0
21 0.0 0.0 0.0 0.0 94.4 0.0 0.0 0.0 100.0
23 2.3 0.0 0.0 0.0 0.0 65.1 11.6 0.0 100.0
29 3.7 2.6 0.4 2.2 0.0 19.7 49.4 2.2 100.0
30 0.0 12.4 0.0 6.2 0.0 0.0 18.0 29.2 100.0
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PRnCEDURE DISCRIM CLASSIFIED BY: SOIL TYPE DATA: NORMAL FIELD

COUNT

TO CATEGORY 0 C M T S S C C
TO SOIL TYPE 2 3 7 8 9 13 14 15

FROM SOIL #
0 2 20 5 0 0 0 0 1 0
C 3 2 325 13 0 1 9 6 7
SM-MS 7 0 11 66 0 0 9 56 0
S-SM 8 0 17 76 309 129 126 2 308
S 9 7 57 173 95 222 344 25 386
Ssh 13 0 10 12 7 7 14 11 12
CS 14 2 96 21 1 6 20 19 19
CSsh 15 0 2 0 0 0 2 0 2
SC 16 6 80 96 26 22 27 78 148
SCsh 17 0 4 78 1 4 32 44 24
So 19 0 0 0 0 v 0 0 0
Csh 21 0 0 0 0 0 0 0 0
WRk 23 0 0 3 0 2 2 0 1
Scem 29 0 15 5 0 7 8 3 7
SCcem 30 0 1 3 0 0 1 52 0

TOTALS 37 623 543 439 400 594 297 914

TO CATEGORY U U S C R S U TOTALS
TO SOIL TYPE 16 17 19 21 23 29 30

FROM SOIL
2 0 0 0 0 0 0 0 26
3 1 0 1 1 0 1 1 368
7 0 0 0 2 0 0 6 150
8 28 6 789 1 213 67 27 2098
9 173 20 650 24 277 320 151 2924

13 4 1 35 6 17 28 4 168
14 42 5 3 38 3 5 18 298
15 0 0 1 0 3 0 0 10
16 235 24 8 14 6 166 111 1047
17 169 30 0 0 3 22 70 481
19 0 0 18 1 0 6 1 26
21 0 0 0 18 0 0 0 18
23 1 0 3 0 23 11 0 43
29 15 1 12 9 95 85 7 269
30 43 15 0 0 3 19 24 161

TOTALS 711 102 1520 114 643 730 420 8087
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PROCEDURE DISCRIM CLASSIFIED BY: SOIL TYPE DATA: NORMAL FIELD

PERCENTAGE

TO CATEGORY 0 C M T S S C C

TO SOIL TYPE 2 3 7 8 9 13 14 15

FROM SOIL #
0 2 76.9 19.2 0.0 0.0 0.0 0.0 3.8 0.0
C 3 0.5 88.3 3.5 0.0 0.3 2.4 1.6 ' 1.9

SM-MS 7 0.0 7.3 44.0 0.0 0.0 6.0 37.3 0.0
S-SM 8 0.0 0.8 3.6 14.7 6.1 6.0 0.1 14.7

S 9 0.2 1.9 5.9 3.2 7.6 11.8 0.9 13.2

Ssh 13 0.0 6.0 7.1 4.2 4.2 8.3 6.5 7.1

CS 14 0.7 32.2 7.0 0.3 2.0 6.7 6.4 6.4

CSsh 15 0.0 20.0 0.0 0.0 0.0 20.0 0.0 20.0
SC 16 0.6 7.6 9.2 2.5 2.1 2.6 7.4 14.1

SCsh 17 0.0 0.8 16.2 0.2 0.8 6.7 9.1 5.0
So 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Csh 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

WRk 23 0.0 0.0 0.0 0.0 4.7 4.7 0.0 2.3

Scem 29 0.0 5.6 1.9 0.0 2.6 3.0 1.1 2.6
SCcem 30 0.0 0.6 1.9 0.0 0.0 0.6 3.2.3 0.0

TO CATEGORY U U S C R S U TOTALS

TO SOIL TYPE 16 17 19 21 23 29 30

FROM SOIL
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
3 0.3 0.0 0.3 0.3 0.0 0.3 0.3 100.0
7 0.,0 0.0 0.0 1.3 0.0 0.0 4.0 100.0
8 1.3 0.3 37.6 0.0 10.2 3.2 1.3 100.0

9 5.9 0.7 22.2 0.8 9.5 10.9 5.2 100.0
13 2.4 0.6 20.8 3.6 10.1 16.7 2.4 100.0
14 14.1 1.7 1.0 12.8 1.0 1.7 6.0 100.0
15 0.0 0.0 10.0 0.0 30.0 0.0 0.0 100.0
16 22.4 2.3 0.8 1.3 0.6 15.9 10.6 100.0
17 35.1 6.2 0.0 0.0 0.6 4.6 14.6 100.0
19 0.0 0.0 69.2 3.8 0.0 23.1 3.8 100.0
21 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
23 2.3 0.0 7.0 0.0 53.5 25.6 0.0 100.0
29 5.6 0.4 4.5 3.3 35.3 31.6 2.6 100.0
30 26.7 9.3 0.0 0.0 1.9 11.8 14.9 100.0
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PROCEDURE NEIGHBOR CLASSIFIED BY: SOIL TYPE 'DATA: FIELD

COUNT

TO CATEGORY 0 C M T S S C C
TO SOIL TYPE 2 3 7 8 9 13 14 15

FROM SOIL #
0 2 25 0 0 0 0 0 0 0
C 3 2 319 8 0 0 4 26 1
SM-MS 7 0 2 137 0 0 0 5 1
S-SM 8 1 22 26 995 302 118 138 13
S 9 6 47 80 221 1228 153 209 11
Ssh 13 2 2 10 0 0 118 4 3
CS 14 5 11 16 1 0 13 195 1
CSsh 15 0 0 0 0 0 0 0 10
SC 16 2 19 24 39 45 66 93 5
SCsh 17 0 1 4 1 0 20 22 1
So 19 0 0 0 0 0 0 0 0
Csh 21 0 0 0 0 0 0 0 0
WRk 23 0 0 0 0 0 0 0 0
Scem 29 0 4 9 0 0 11 3 2
SCcem 30 0 0 2 0 0 0 1 0

TOTALS 43 427 316 1257 1575 503 696 48

TO CATEGORY U U S C R S U TOTALS
TO SOIL TYPE 16 17 19 21 23 29 30

FROM SOIL
2 0 0 0 1 0 0 0 26
3 1 0 2 0 0 4 1 368
7 0 0 0 4 0 1 0 150
8 126 152 9 0 57 105 34 2098
9 167 295 49 8 61 192 197 2924

13 0 1 5 3 5 8 7 168
14 8 9 4 8 2 11 14 298
15 0 0 0 0 0 0 0 10
16 444 149 12 0 4 55 90 1047
17 11 334 8 0 2 18 59 481
19 0 0 26 0 0 0 0 26
21 0 0 0 18 0 0 0 18
23 0 0 0 0 43 0 0 43
29 2 5 2 2 12 204 13 269
30 0 2 0 0 1 6 149 161

TOTALS 759 947 117 44 187 604 564 8087
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PROCEDURE NEIGHBOR CLASSIFIED BY: SOIL TYPE DATA: FIELD

PERCENTAGE

TO CATEGORY 0 C M T S S C C
TO SOIL TYPE 2 3 7 8 9 13 14 15

FROM SOIL #
0 2 96.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 3 0.5 86.7 2.2 0.0 0.0 1.1 7.1 0.3
SM-MS 7 0.0 1.3 91.3 0.0 0.0 0.0 3.3 0.7
S-SM 8 0.0 1.0 1.2 47.4 14.4 5.6 6.6 0.6
S 9 0.2 1.6 2.7 7.6 42.0 5.2 7.1 0.4
Ssh 13 1.2 1.2 6.0 0.0 0.0 70.2 2.4 1.8
CS 14 1.7 3.7 5.4 0.3 0.0 4.4 65.4 0.3
CSsh 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
SC 16 0.2 1.8 2.3 3.7 4.3 6.3 8.9 0.5
SCsh 17 0.0 0.2 0.8 0.2 0.0 4.2 4.6 0.2
So 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Csh 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
WRk 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Scem 29 0.0 1.5 3.3 0.0 0.0 4.1 1.1 0.7
SCcem 30 0.0 0.0 1.2 0.0 0.0 0.0 0.6 0.0

TO CATEGORY U U S C R S U TOTALS
TO SOIL TYPE 16 17 19 21 23 29 30

FROM SOIL
2 0.0 0.0 0.0 3.8 0.0 0.0 0.0 100.0
3 0.3 0.0 0.5 0.0 0.0 1.1 0.3 100.0
7 0.0 0.0 0.0 2.7 0.0 0.7 0.0 100.0
8 6.0 7.2 0.4 0.0 2.7 5.0 1.6 100.0
9 5.7 10.1 1.7 0.3 2.1 6.6 6.7 100.0
13 0.0 0.6 3.0 1.8 3.0 4.8 4.2 100.0
14 2.7 3.0 1.3 2.7 0.7 3.7 4.7 100.0
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
16 42.4 14.2 1.1 0.0 0.4 5.3 8.6 100.0
17 2.3 69.4 1.7 0.0 0.4 3.7 12.3 100.0
19 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0
21 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
23 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0
29 0.7 1.9 0.7 0.7 4.5 75.8 4.8 100.0
30 0.0 1.2 0.0 0.0 0.6 3.7 92.5 100.0
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PROCEDURE NEIGHBOR CLASSIFIED BY: SOIL TYPE DATA: NORMAL FIELD

COUNT

TO CATEGORY 0 C M T S S C C
TO SOIL TYPE 2 3 7 8 9 13 14 15

FROM SOIL #
0 2 26 0 0 0 0 0 0 0
C 3 3 321 8 0 0 7 18 3
SM-MS 7 1 0 136 0 0 1 3 3
S-SM 8 1 9 38 1182 353 110 65 11
S 9 7 53 69 270 1382 157 169 13
Ssh 13 1 2 11 0 0 122 1 3
CS 14 12 19 19 0 0 9 173 1
CSsh 15 0 0 0 0 0 0 0 10
SC 16 4 29 70 33 45 44 78 4
SCsh 17 0 4 49 0 0 11 26 2
So 19 0 0 0 0 0 0 0 0
Csh 21 0 0 0 0 0 0 0 0
WRk 23 0 0 0 0 0 0 0 1
Scem 29 0 5 4 0 0 15 6 3
SCcem 30 0 0 18 0 0 0 1 0

TOTALS 55 442 422 1485 1780 476 540 54

FROM SOIL U U S C R S U TOTALS
16 17 19 21 23 29 30

2 0 0 0 0 0 0 0 26
3 1 1 0 0 1 4 1 368
7 0 0 0 0 0 0 6 150
8 80 84 18 0 36 100 11 2098
9 149 206 31 6 65 233 114 2924

13 0 1 7 5 7 6 2 168
14 3 14 0 16 1 16 15 298
15 0 0 0 0 0 0 0 10
16 437 146 4 8 9 48 88 1047
17 24 284 5 0 4 17 55 481
19 0 0 26 0 0 0 0 26
21 0 0 0 18 0 0 0 18
23 0 0 1 0 41 0 0 43
29 2 4 3 0 14 199 14 269
30 0 4 0 0 2 5 131 161

TOTALS 696 744 95 53 180 628 437 8087
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PROCEDURE NEIGHBOR CLASSIFIED BY: SOIL TYPE DATA: NORMAL FIELD

PERCENTAGE

TO CATEGORY 0 C M T S S C C
TO SOIL TYPE 2 3 7 8 9 13 14 15

FROM SOIL #
0 2 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 3 0.8 87.2 2.2 0.0 0.0 1.9 4.9 0.8
SM-MS 7 0.7 0.0 90.7 0.0 0.0 0.7 2.0 2.0
S-SM 8 0.0 0.4 1.8 56.3 16.8 5.2 3.1 0.5
S 9 0.2 1.8 2.4 9.2 47.3 5.4 5.8 0.4
Ssh 13 0.6 1.2 6.5 0.0 0.0 72.6 0.6 1.8
CS 14 4.0 6.4 6.4 0.0 0.0 3.0 58.1 0.3
CSsh 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
SC 16 0.4 2.8 6.7 3.2 4.3 4.2 7.4 0.4
SCsh 17 0.0 0.8 10.2 0.0 0.0 2.3 5.4 0.4
So 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Csh 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
WRk 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2-.3
Scem 29 0.0 1.9 1.5 0.0 0.0 5.6 2.2 1.1
SCcem 30 0.0 0.0 11.2 0.0 0.0 0.0 0.6 0.0

TO CATEGORY U U S C R S U TOTALS
TO SOIL TYPE 16 17 19 21 23 29 30

FROM SOIL
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
3 0.3 0.3 0.0 0.0 0.3 1.1 0.3 100.0
7 0.0 0.0 0.0 0.0 0.0 0.0 4.0 100.0
8 3.8 4.0 0.9 0.0 1.7 4.8 0.5 100.0
9 5.1 7.0 1.1 0.2 2.2 8.0 3.9 100.0

13 0.0 0.6 4.2 3.0 4.2 3.6 1.2 100.0
14 1.0 4.7 0.0 5.4 0.3 5.4 5.0 100.0
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
16 41.7 13.9 0.4 0.8 0.9 4.6 8.4 100.0
17 5.0 59.0 1.0 0.0 0.8 3.5 11.4 100.0
19 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0
21 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
23 0.0 0.0 2.3 0.0 95.3 0.0 0.0 100.0
29 0.7 1.5 1.1 0.0 5.2 74.0 5.2 100.0
30 0.0 2.5 0.0 0.0 1.2 3.1 81.4 100.0
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PROCEDURE DISCRIM CLASSIFIED BY: CATEGORY DATA: FIELD

COUNT

TO C M 0 R S T U TOTALS
FROM
C 373 106 55 8 32 59 61 694
M 21 114 0 0 8 5 2 150
0 3 3 20 0 0 0 0 26
R 0 0 0 32 2 9 0 43
S 187 306 13 777 645 614 845 3387
T 74 12 0 431 389 1023 169 2098
U 179 111 8 24 138 252 977 1689

TOTALS 837 652 96 1272 1214 1962 2054 8087

PERCENTAGE

TO C M 0 R S T U TOTALS
FROM

C 53.7 15.3 7.9 1.2 4.6 8.5 8.8 100.0
M 14.0 76.0 0.0 0.0 5.3 3.3 1.3 100.0
0 11.5 11.5 76.9 0.0 0.0 0.0 0.0 100.0
R 0.0 0.0 0.0 74.4 4.7 20.9 0.0 100.0
S 5.5 9.0 0.4 22.9 19.0 18.1 24.9 100.0
T 3.5 0.6 0.0 20.5 18.5 48.8 8.1 100.0
U 10.6 6.6 0.5 1.4 8.2 14.9 57.8 100.0
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PROCEDURE DISCRIM CLASSIFIED BY: CATEGORY DATA: NORMAL FIELD

COUNT

TO C M 0 R S T U TOTALS

FROM
C 445 52 44 8 44 13 88 694
M 25 112 0 0 6 0 7 150

0 6 0 20 0 0 0 0 26

R 0 0 0 29 9 2 3 43

S 106 266 14 695 897 872 537 3387

T 27 90 0 277 399 1197 108 2098

U 120 380 10 52 164 97 866 1689

TOTALS 729 900 88 1061 1519 2181 1609 8087

PERCENTAGE

TO C M 0 R S T U TOTALS

FROM
C 64.1 7.5 6.3 1.2 6.3 1.9 12.7 100.0
M 16.7 74.7 0.0 0.0 4.0 0.0 4.7 100.0

0 23.1 0.0 76.9 0.0 0.0 0.0 0.0 100.0

R 0.0 0.0 0.0 67.4 20.9 4.7 7.0 100.0
S 3.1 7.9 0.4 20.5 26.5 25.7 15.9 100.0
T 1.3 4.3 0.0 13.2 19.0 57.1 5.1 100.0
U 7.1 22.5 0.6 3.1 9.7 5.7 51.3 100.0
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PROCEDURE NEIGHBOR CLASSIFIED BY: CATEGORY DATA: FIELD

COUNT

TO C M 0 R S T U TOTALS
FROM
C 586 53 12 3 1 9 30 694
M 0 150 0 0 0 0 0 150
0 0 0 26 0 0 0 0 26
R 0 0 0 43 0 0 0 43
S 349 117 8 79 1613 718 503 3387
T 162 26 1 57 187 1529 136 2098
U 146 31 2 7 130 137 1236 1689

TOTALS 1243 377 49 189 1931 2393 1905 8087

PERCENTAGE

TO C M 0 R S T U TOTALS
FROM
C 84.4 7.6 1.7 0.4 0.1 1.3 4.3 100.0
M 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0
0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0
R 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
S 10.3 3.5 0.2 2.3 47.6 21.2 14.9 100.0
T 7.7 1.2 0.0 2.7 8.9 72.9 6.5 100.0
U 8.6 1.8 0.1 0.4 7.7 8.1 73.2 100.0
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PROCEDURE NEIGHBOR CLASSIFIED BY: CATEGORY DATA: NORMAL FIELD

COUNT

TO C M 0 R S T U TOTALS
FROM
C 601 42 14 3 0 2 32 694
M 0 149 1 0 0 0 0 150
0 0 0 26 0 0 0 0 26
R 0 0 0 43 0 0 0 43
S 344 98 8 91 1733 772 341 3387
T 89 40 1 36 197 1663 72 2098
U 156 164 4 15 107 80 1163 1689

TOTALS 1190 493 54 188 2037 2517 1608 8087

PERCENTAGE

TO C M 0 R S T U TOTALS
FROM
C 86.6 6.1 2.0 0.4 0.0 0.3 4.6 100.0
M 0.0 99.3 0.7 0.0 0.0 0.0 0.0 100.0
0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0
R 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
S 10.2 2.9 0.2 2.7 51.2 22.8 10.1 100.0
T 4.2 1.9 0.0 1.7 9.4 79.3 3.4 100.0
U 9.2 9.7 0.2 0.9 6.3 4.7 68.9 100.0
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APPENDIX E-1. PROGRAM FILTER

Introduction

This program implements an average-value data filter for electronic

friction-cone penetrometer data, calculating the average value of qcand

fover a 0.5 meter depth interval, and assigning this value to the

midpoint of the interval. The program is written in the SAS language.

Input variables are qc fs, and depth (in meters).

Listing

data (keep=depth qibar fibar);
set datain (rename=(depth=d));
retain /* CARRY THESE VALUES FORWARD *
q19 q18 q17 q16 q15 q14 q13 q12 q11 /* TO NEXT OBSERVATION
f19 f18 f17 f16 f15 f14 f13 f12 fl;

qcbar=mean(qc,qll,ql2,ql3,ql4,ql5,ql6,qll,q18,ql9); /* CALCULATE *
fsbar=mean(fs,fll,fl2,fl3,fl4,f15,fl6,fl7,f18,f19); /*AVERAGE VALUE*/

depth =d- .25; /* CALCULATE APPLICABLE DEPTH FOR AVERAGE VALUE */

q19=q18; q18=ql7; qll=ql6; q16=q15; ql5=q14; /* UPDATE VALUES FOR *
q14=q13; q13=qI2; q12=q11; qll=qc; /* NEXT OBSERVATION *

f19=f18; fl8=fl7; f17=f16; f16-f15; fl5=fl4;
f14=f13; f13=f12; f12=f1l; fll=fs;

if d-int(d)=O or d-int(d)-.5 then output;/*OUTPUT VALUES EVERY 0.5 M*/

run;
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APPENDIX E-2. PROGRAM NORMAL

Introduction

This program implements Olsen and Malone's (36) method for

normalizing electronic cone penetration test data to an effective

overburden pressure of 1 tsf (96 kPa). The purpose of the program is to

determine Olsen and Malone's "n" value, which is then used to calculate

the normalized qc (qcn) and the normalized friction ratio (frn).

Regression analysis was used to determine the constants which describe

the lines of constant "n" on the chart (which was divided into a left-

hand and right-hand side), using an intrinsic function approach. The

program is written in the SAS language. Input variables are qctsf (qc

in tsf), fratio (friction ratio), and sigmav (vertical effective stress

in tsf).

Listing

data
set datain;

n-.; /* INITIALIZE N TO MISSING VALUE */
logqctsf=loglO(qctsf);
logsigma=loglO(sigmav);

kcal=-1O.47229; kca2=8.64503; kmal=1.52917; kma2=-O.61074;/*REGRESSION*/
kcbl=-3.10784; kcb2=3.78449; kmbl=O.62540; kmb2=-O.01425; /*CONSTANTS */
kccl=-2.78006; kcc2=3.51243; kmcl=0.99220; kmc2=-0.31870;

aa=kmal*logsigma;
ba=kca1+logsigma+kma1*logfrat+kma2*logsigma-kma1*logsigma;
ca-kca2-logqctsf+kma2*logfrat-kma2*logsigma;

ab-kmbl*logsigma;
bb=kcb1+logsigma+kmb1*logfrat+kmb2*logsigma-kmb1*logsigma;
cb-kcb2-logqctsf+kmb2*logfrat-kmb2*logsigma;
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ac=kmcl*1 ogsigma;
bc=kccl+1ogsigmaikmcl*1ogfrat+kmc2*logsigma-kmcl*logsigia;
cc=kcc2-logqctsf~kmc2*logfrat-kmc2*1ogsigma;

nap=(-ba+(ba*ba-4*aa*ca)**.5)/2/aa;
nam=(-ba- (ba*ba-4*aa*ca)**.5)/2/aa;
nbp=( -bb+(bb*bb-4*ab*cb)**. 5)/2/ab;
nbm=( -bb- (bb*bb-4*ab*cb)**. 5)/2/ab;
ncp=(-bc+(bc*bc-4*ac*cc)**.5)/2/ac;
ncm=(-bc- (bc*bc-4*ac*cc)**.5)/2/ac;

if .6t=nap<-.66 then do;
n=nap;
qcn=qctsf /s igmav**n;
frn=fratio/sigmav**(1-n);
if lcgIO(qcn)>1.563-1.942*loglO(frn) then n=.;
end;

if .66<=nbp<=.83 then do;
n=nbp;
qcn=qctsf/sigmav**n;
frn=fratio/sigmav**(l-n);
if 1ogIO(qcn)>1.563-1.942*1oglO(frn) then n-.;
end;

if .83<=ncp<=1.O then do;
n=ncp;
qcn=qctsf/sigmav**n;
frn=fratio/sigmav**(l-n);
if loglO(qcn)>1.563-1.942*1oglO(frn) then n=.;
end;

if .6<=nam<-.66 then do;
n=nam;
qcn=qctsf/sigmav**n;
frn=fratio/sigmav**(1-n);
if logIO(qcn)>1.563-1.942*logIO(frn) then n=.;
end;

if .66<=nbni<=.83 then do;
n =n bi;
qcn=qctsf/sigmav**n;
frn=fratio/sigmav**(l-n);
if log1O(qcn)>1.563-1.942*1oglO(frn) then n=.;
end;

if .83<=ncm<=1.O then do;
n=ncm;
qcn=qctsf/s igmav**n;
frn=fratio/sigmav**(1-n);
if logIO(qcn)>1.563-1.942*loglO(frn) then n=.;
end;
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if n=. then do;

kcal=-16.24121; kca2=12.60360; kmalz6.84926; kma2=-2.36901;
kcbl=-7.21993; kcb2=6.64955; krbl=12.37220; kmb2=-6.01415;
kccl=-7.62469; kcc2=6.98551; kmcl=3.97255; kmc2=O.95756;

aa=kmal*1 ogsigma;
ba~kca1.tiogsigma+kmal*1ogfrat+kma2*logsigma-kmal*1 ogsigma;
ca~kca2-1 ogqctsf+kma2*l ogfrat-kma2*1 ogsignla;

ab-kmbl*logsigma;
bb~kcb1+1ogsigma+kmbl*logfrat+kmb2*logsigma-kmbl*logsigma;
cb~kcb2-logqctsf+kmb2*logfrat-kmb2*logsigma;

ac~kmcl*1 ogsigma;
bc=kccl+iogsigma+kmcl*1ogfrat+kmc2*logsigma-kmcl*logsigma;
cc=kcc2-1ogqctsf+kmc2*logfrat-kmc2*logsigma;

nap=(-ba+(ba*ba-4*aa*ca)**. 5)/2/aa;
-nam=(-ba-(ba*ba-4*aa*ca)**.5)/2/aa;

nbp=( -bb+(bb*bb-4*ab*cb)**.5)/2/ab;
nbm=( -bb- (bb*bb-4*ab*cb)**. 5)/2/ab;
ncp=(-bc+(bc*bc- *ac*cc)**.5)/2/ac,
ncm=( -bc- (bc*bc-4*ac*cc)**. 5)/2/ac;

if .6<=nap<=.66 then do;
n=nap;
qcn=qctsf/sigmav**n;
frn=fratio/sigmav**(l-n);
if loglO(qcn)<1.563-1.942*log1O(frn) then n=.;
end;

if .66<=nbp<=.83 then do;
n=nbp;
qcn=qctsf/sigmav**n;
frn=fratio/sigmav**(I-n);
if logIO(qcn)<1.563-1.942*log1O(frn) then n=.;
end;

if .83<=ncp<=1.O then do;
n=ncp;
qcn=qctsf/sigmav**n;
frn=fratio/sigmav**(1-n);
if logIO(qcn)<1.563-1.942*1oglO(frn) then n=..;
end;

if .6<=nam<=.66 then do;
n-nam;
qcn=qctsf/sigmav**n;
frn=fratio/sigmav**(1-n);
if 1oglO(qcn)<1.563-1.942*logIO(frn) then n=.;
end;
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if .66<=nbm<-.83 then do;
n=nbm;
qcn=qctsf/sigmav**n;
frn=fratio/sigmav**(1-n);
if logIO(qcn)cz1.563-1.942*logIO(frn) then n=.;
end;

if .83<=ncm<=1.O then do;
n=ncm;
qcn=qctsf/sigmav**n;
frn=fratio/sigmav**(1-n);
if loglO(qcn)<1.563-1.942*loglO(frn) then n=.;
end;

end;

if n=. then do;
qcn~qctsf;
frn=frati a;
end;

drop logfrat logqctsf logsigma kcal kca2 kmal kma2 kcbl kcb2
kmbl kmb2 kccl kcc2 kind kmc2 aa ba ca ab bb cb ac bc cc
nap nam nbp nbm ncp ncm;

run;
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APPENDIX E-3. PROGRAM RANDOM

Introduction

This BASIC program calculates the stationary component of a random

field model, Z**. The input data set, RANDOM.DAT, contains the

nonnormalized residuals for the nonstationary, or trend component, from

the soundings around the location to be predicted. Note that the first

row of the data contains the distances (r) from the predicted sounding

for input into the autocorrelation function. The autocorrelation

function is assumed to be of the form rho = exp(-r/k), where k is the

constant of the autocorrelation function. Missing data should be

identified with a value of -99. Reference: Kulatilake and Ghosh (26).

Listing

10 PRINT
20 PRINT " RANDOM FIELD MODEL
30 PRINT " Z** CALCULATIONS
40 PRINT
50 PRINT " Programmed by Kenneth J. Knox, February 1989, Univ of Florida"
60 PRINT
70 PRINT " This program calculates the stationary component of a random field"
80 PRINT " model, Z**. The input data set, RANDOM.DAT, contains the "
90 PRINT " nonnormalized residuals for the nonstationary, or trend component,"
100 PRINT " from the soundings around the location to be predicted."
110 PRINT " Note: the first row of data contains the distances (r) for input"
120 PRINT " into the autocorrelation function."
130 PRINT " Note: missing data should be recognized with a value of -99."
140 PRINT " Ref: PENETRATION TESTING 1988 (ISOPT-1), p. 818"
150 PRINT
160 DIM VALUE(405,6), NORM(405,6), R(6), RHO(6), ZSTAR(405,6)
170 INPUT "HOW MANY OBSERVATIONS (DEPTHS) IN THE DATA?";OBS
180 INPUT "HOW MANY SOUNDINGS WITHIN THE CORRELATED REGION?";Q
190 PRINT "WHAT IS THE CONSTANT, K, FOR THE AUTOCORRELATION FUNCTION OF THE"
200 INPUT "OF THE FORM: RHO(r) = EXP(-r/K)?";K
210 INPUT "WHAT IS THE MEAN OF THE GLOBAL DATA SET?";MEAN
220 INPUT "WHAT IS THE STANDARD DEVIATION OF THE GLOBAL DATA SET?";STD
230 PRINT
240 OPEN "RANDOM.DAT" FOR INPUT AS #1
250 OPEN "RANDOM.OUT" FOR OUTPUT AS #2
260 FOR J=1 TO Q
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270 INPUT #1, R(J)
280 NEXT J
290 PRINT #2, "MEAN = ";MEAN
300 PRINT #2, "STANDARD DEVIATION = ";STD
310 PRINT #2,
320 PRINT " Z** MATRIX"
330 PRINT
340 PRINT #2, " Z** MATRIX"
350 PRINT #2,
360 FOR I=1 TO OBS
370 PRINT
380 PRINT #2,
390 RHOSUM=O
400 FOR J=l TO Q
410 INPUT #I, VALUE(I,J)
420 IF VALUE(I,J)=-99 THEN RHO(J)=O ELSE RHO(J)=EXP(-R(J)/K)
430 RHOSUM=RHOSUM+RHO(J)
440 NEXT J
450 ZSUM=O
455 IF RHOSUM=O THEN PRINT "NO OBSERVATIONS":PRINT #2,"NO OBSERVATIONS":GOTO 520
460 FOR J=1 TO Q
470 Z(J)=RHO(J)/RHOSUM*(VALUE(I,J)-MEAN)
480 ZSUM=ZSUM+Z(J)
490 NEXT J
500 PRINT "Z**(";I;") = ";ZSUM
510 PRINT #2, ZSUM
520 NEXT I
530 END
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APPENDIX E-4. PROGRAM AUTOCOR

Introduction

This BASIC program calculates the autocorrelation coefficient for a

given set of input data, in the form of (distance, value). The program

assumes the data is from soundings located in a straight line, with a

distance measured from a common reference. The data need not be

regularly-spaced (if so, use PROGRAM AUTOCOR2), since an average

distance interval and a tolerance are input parameters. Reference:

Kulatilake and Ghosh (26).

Listing

10 REM *********************************************************
20 REM * *
30 REM * AUTOCORRELATION COEFFICIENT *
40 REM * *
50 REM *********************************************************
60 REM
70 REM This program calculated the autocorrelation coefficient for a given
80 REM set of input data, in the form of (distance, value).
90 REM
100 REM by Kenneth J. Knox, January 1989, Univ of Florida
110 REM
120 REM ********** INITIALIZE PROGRAM AND READ DATA **********
130 REM
140 DIM DIST(30), VALUE(30), DELTA(30,30), X(30), Y(30)
150 PRINT " AUTOCORRELATION FUNCTION"
160 PRINT
170 PRINT " by Kenneth J. Knox"
180 PRINT " January 1989"
190 PRINT
200 READ N : 'N=NUMBER OF OBSERVATIONS
210 FOR 1=1 TO N
220 READ DIST(I), VALUE(I)
230 NEXT I
240 FOR 1=1 TO N
250 FOR J=1 TO N
260 DELTA(I,J)=ABS(DIST(I)-DIST(J))
270 NEXT J
280 NEXT I
290 REM
300 REM ***** CALCULATE DELTA(DISTANCES) AND AUTOCORRELATION FUNCTION *****
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310 REM
320 INPUT "INPUT DISTANCE INCREMENT, MAXIMUM DISTANCE AND TOLERANCE"; INC, DELMAX,
330 FOR DEL=O TO DELMAX STEP INC
340 COUNTPO
350 XSUM=O
360 YSUM=O
370 SUM1=O
380 SUM2=0
390 SUM3=O
400 FOR 1=1 TO N
410 FOR J=1 TO I
420 IF (((DEL-TOL)>DELTA(I,J)) OR (DELTA(I,J)>(DEL+TOL))) THEN 480
430 COUNT=COUNT+l
440 X(COUNT)=VALUE(1)
450 XSUM-XSUM+X(COUNT)
460 Y(COUNT)=VALUE(J)
470 YSUM-YSUM+Y(COUNT)
480 NEXT J
490 NEXT I
500 XBAR=XSUM/COUNT
510 YBAR=YSUM/COUNT
520 FOR I=1 TO COUNT
530 SUM1=SUM1+((X(I)-XBAR)*(Y(I)-YBAR))
540 SUM2=SUM2+(X(I)-XBAR)A2
550 SUM3=SUM3+(Y(I)-YBAR)A2
560 NEXT I
570 R=SUMI/SQR(SUM2*SUM3),
580 PRINT "FOR DISTANCE INCREMENT = ";DEL;", R = ";R
590 NEXT DEL
600 END
610 DATA ***input data***
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APPENDIX E-5. PROGRAM AUTOCOR2

Introduction

This BASIC program calculates the autocorrelation coefficient for a

given array of input data, in the form of (depth, NI, ..., Nk). The program

assumes the data is from regularly-spaced soundings located in a

straight line. Reference: Kulatilake and Southworth (28).

Listing

10 REM *********************************************************
20 REM * *
30 REM * AUTOCORRELATION FUNCTION *
40 REM * version 2 *
50 REM *********************************************************
60 REM
70 REM This program calculates the autocorrelation coefficient for a given
80 REM array of input data, in the form of (depth, N1, ..., Nk).
90 REM Reference: Kulatilake and Southworth, 1987
100 REM
110 REM by Kenneth J. Knox, January 1989, Univ of Florida
120 REM
130 REM ********** INITIALIZE PROGRAM AND READ DATA **********
140 REM
150 DIM DEPTH(30), VALUE(30,30), DELTA(30,30)
160 PRINT " AUTOCORRELATION FUNCTION"
170 PRINT
180 PRINT " by Kenneth J. Knox"
190 PRINT " January 1989"
200 PRINT
210 OPEN "A:AUTOCOR.DAT" FOR INPUT AS #1
220 OPEN "A:AUTOCOR.OUT" FOR OUTPUT AS #2
230 REM ****** N = # OF DEPTHS K = # OF SOUNDINGS ******
240 INPUT #1, N, K
250 FOR I=1 TO N
260 INPUT #1, DEPTH(I)
270 FOR J=1 TO K
280 INPUT #1, VALUE(I,J)
290 NEXT J
300 NEXT I
310 REM
320 REM ***** CALCULATE MEAN (YBAR) AND BRACKETS (DELTA) *****
330 REM
340 YSUM=O
350 COUNT=O
360 FOR I=1 TO N
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370 FOR J=1 TO K
380 IF VALUE(I,J)--99 THEN GOTO 410
390 YSUM=YSUM+VALUE(I,J)
400 COUNT=COUNT+l
410 NEXT J
420 NEXT I
430 YBAR=YSUM/COUNT
440 PRINT
450 PRINT "THE MEAN VALUE = ";YBAR
460 PRINT
470 DENOM=O
480 COUNT=O
490 FOR I=1 TO N
500 FOR J=1 TO K
510 IF VALUE(I,J)=-99 THEN GOTO 550
520 DELTA(I,J)=VALUE(I,J)-YBAR
530 DENOM-DENOM+DELTA(I,J)*DELTA(I,J)
540 COUNT-COUNT+I
550 NEXT J
560 NEXT I
570 DENOM=DENOM/COUNT
580 M=INT(.25*K+.5)
590 FOR LAG=O TO M
600 NUM=O
610 COUNT=O
620 FOR T-1 TO K-LAG
630 FOR I=1 TO N
640 IF VALUE(I,T+LAG)=-99 THEN GOTO 680
650 IF VALUE(I,T)=-99 THEN GOTO 680
660 NUM=NUM+(VALUE(I,T+LAG)-YBAR)*(VALUE(I,T)-YBAR)
670 COUNT-COUNT+1
680 NEXT I
690 NEXT T
700 RHO=NUM/COUNT/DENOM
710 PRINT "FOR LAG INTERVAL NUMBER ";LAG;", RHO = ";RHO
720 PRINT #2, "FOR LAG INTERVAL NUMBER ";LAG;", RHO = ";RHO
730 NEXT LAG
740 END
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STEPWISE REGRESSION SUMMARIES

Choctawhatchee Bay Autocorrelation Function

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable QC

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 D5X1 1 0.3625 0.3625 267.8094 0.0001
2 D1 2 0.0481 0.4106 38.3863 0.0001
3 D2 3 0.0847 0.4954 78.7592 0.0001
4 D8 4 0.0504 0.5458 51.9277 0.0001
5 D3X1 5 0.0089 0.5546 9.2899 0.0024
6 X1 6 0.0055 0.5601 5.8307 0.0161
7 DIXi 7 0.0040 0.5641 4.2200 0.0405
8 D3XI 6 0.0001 0.5640 0.1026 0.7488

***AUTOCORRELATION FUNCTION USED STEP 4***

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable FRICTION

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

I D5XI 1 0.5668 0.5668 616.3491 0.0001
2 DIXI 2 0.0595 0.6263 74.8345 0.0001
3 X2 3 0.0080 0.6343 10.2275 0.0015
4 D2 4 0.0157 0.6500 21.0394 0.0001
5 D4X1 5 0.0079 0.6580 10.8216 0.0011
6 D5XI 4 0.0010 0.6570 1.3195 0.2513
7 D8 5 0.0027 0.6597 3.7088 0.0547

***AUTOCORRELATION FUNCTION USED STEP 4***
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Choctawhatchee Bay Regression Models

Prediction of Choctawhatchee Bay Sounding E

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable QC

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 D5XI 1 0.3748 0.3748 258.4299 0.0001
2 DIXI 2 0.0424 0.4173 31.3253 0.0001
3 X1 3 0.0395 0.4568 31.1920 0.0001
4 D3X1 4 0.0819 0.5387 75.9493 0.0001

***LOW TERM MODEL USED STEP 3 HIGH TERM MODEL USED STEP 4***

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable FRICTION

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 D5X1 1 0.5734 0.5734 579.2678 0.0001
2 DIXI 2 0.0565 0.6299 65.6958 0.0001
3 D3 3 0.0068 0.6367 8.0190 0.0048
4 X2 4 0.0156 0.6523 19.2337 0.0001
5 D8 5 0.0147 0.6670 18.7848 0.0001

***LOW TERM MODEL USED STEP2 HIGH TERM MODEL USED STEP 5***
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Prediction of Choctawhatchee Bay Sounding H

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable QC

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 D5XI 1 0.4024 0.4024 290.8712 0.0001
2 DIXi 2 0.0404 0.4428 31.2589 0.0001
3 X1 3 0.0431 0.4859 36.0299 0.0001
4 D4X1 4 0.0920 0.5779 93.5176 0.0001
5 D3X2 5 0.0027 0.5806 2.7935 0.0954
6 D8 6 0.0037 0.5843 3.7843 0.0524
7 D5 7 0.0039 0.5882 4.0127 0.0458
8 D1 8 0.0097 0.5979 10.3012 0.0014
9 03 9 0.0132 0.6112 14.4292 0.0002
10 D8 8 0.0000 0.6112 0.0000 0.9948
11 D5X1 7 0.0000 0.6112 0.0079 0.9293

***LOW TERM MODEL USED STEP 4 HIGH TERM MODEL USED STEP 11***

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable FRICTION

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

I D5X1 1 0.5772 0.5772 589.7038 0.0001
2 DIXI 2 0.0584 0.6355 69.0310 0.0001
3 X2 3 0.0075 0.6431 9.0709 0.0028
4 D4XI 4 0.0179 0.6609 22.5974 0.0001
5 D2 5 0.0104 0.6714 13.6044 0.0003
6 D8 6 0.0016 0.6730 2.0826 0.1497
7 D5X1 5 0.0002 0.6727 0.3151 0.5749
8 DI 6 0.0034 0.6761 4.4955 0.0346
9 D3XI 7 0.0017 0.6778 2.2039 0.1384

***LOW TERM MODEL USED STEP 3 HIGH TERM MODEL USED STEP 9***
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Prediction of Choctawhatchee Bay Sounding J

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable QC

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 D5X1 1 0.3289 0.3289 211.7561 0.0001
2 DIXI 2 0.0451 0.3740 31.0211 0.0001
3 XI 3 0.0447 0.4187 33.0715 0.0001
4 D3X1 4 0.0852 0.5039 73.6891 0.0301

***LOW TERM MODEL USED STEP 3 HIGH TERM MODEL USED STEP 4***

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for ent-y into the
model.

Summary of Stepwise Procedure for Dependent Variable FRICTION

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

I D5X1 1 0.5596 0.5596 548.9139 0.0001
2 DIX1 2 0.0538 0.6134 60.0198 0.0001
3 X2 3 0.0140 0.6274 16.1180. 0.0001
4 D2XI 4 0.0205 0.6479 24.9814 0.0001
5 D2 5 0.0098 0.6577 12.3111 0.0005
6 D8 6 0.0020 0.6597 2.5143 0.1136
7 DI 7 0.0024 0.6621 2.9866 0.0847
8 D2XI 6 0.0005 0.6616 0.6242 0.4299

***LOW TERM MODEL USED STEP 4 HIGH TERM MODEL USED STEP 8***
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Prediction of Choctawhatchee Bay Sounding E Using Logs

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable QC

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 D5X1 1 0.2193 0.2193 121.0802 0.0001
2 DI 2 0.0464 0.2657 27.1702 0.0001
3 D2 3 0.1528 0.4185 112.6881 0.0001
4 D6 4 0.1142 0.5327 104.5684 0.0001
5 D3 5 0.0097 0.5423 9.0055 0.0028
6 D2 4 0.0002 0.5421 0.1878 0.6650
7 08 5 0.0111 0.5532 10.6355 0.0012

***LOW TERM MODEL USED STEP 4 HIGH TERM MODEL USED STEP 7***

All variables in the model are-significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable FRICTION

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 D4 1 0.3238 0.3238 206.3537 0.0001
2 D1 2 0.0298 0.3536 19.8299 0.0001
3 06 3 0.0748 0.4284 56.1389 0.0001
4 DSX1 4 0.0191 0.4475 14.8302 0.0001
5 D2X1 5 0.0282 0.4757 22.9575 0.0001
6 X2 6 0.0064 0.4821 5.2516 0.0224
7 X1 7 0.0206 0.5027 17.5978 0.0001
8 DIX2 8 0.0171 0.5198 15.1418 0.0001

***LOW TERM MODEL USED STEP 5 HIGH TERM MODEL USED STEP 8***
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Prediction of Choctawhatchee Bay Sounding H Using Logs

All variables in the model are significant at the 0.1500 3vel.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable QC

Variable Number Partial Model
Step Entered Removed Tn R**2 R**2 F Prob>F

I D5X1 1 0.2395 0.2395 136.0552 0.0001
2 D1 2 0.0504 0.2899 30.5833 0.0001
3 D2 3 0.1615 0.4514 126.5741 0.0001
4 D7 4 0.1066 0.5580 103.5155 0.0001
5 D5X2 5 0.0113 0.5693 11.1956 0.0009
6 X2 6 0.0037 0.5730 3.7454 0.0536
7 DIXI 7 0.0145 0.5876 15.0234 0.0001
8 D4X2 8 0.0119 0.5995 12.6765 0.0004
9 D8 9 0.0034 0.6029 3.5900 0.0588
10 D3 10 0.0365 0.6394 42.7874 0.0001
11 D6 11 0.0067 0.6460 7.9440 0.0051
12 DIX2 12 0.0032 0.6493 3.8714 0.0498
13 D4X2 11 0.0013 0.6480 1.5126 0.2194
14 X1 12 0.0029 0.6509 3.4962 0.0622
15 X2 11 0.0009 0.6500 1.1163 0.2913
16 D4XI 12 0.0040 0.6540 4.8876 0.0276
17 D5X1 11 0.0001 0.6539 0.1164 0.7332
18 D2XI 12 0.0019 0.6558 2.3032 0.1299

***LOW TERM MODEL USED STEP 5 HIGH TERM MODEL USED STEP 18***

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable FRICTION

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

I D4 1 0.3067 0.3067 191.1109 0.0001
2 D1 2 0.0487 0.3554 32.5749 0.0001
3 D6 3 0.0782 0.4336 59.3885 0.0001
4 D5XI 4 0.0200 0.4537 15.7430 0.0001
5 DIXI 5 0.0235 0.4772 19.2544 0.0001
6 X2 6 0.0193 0.4965 16.3846 0.0001
7 X1 7 0.0215 0.5180 18.9709 0.0001
8 D5X2 8 0.0177 0.5357 16.2292 0.0001

***LOW TERM MODEL USED STEP 5 HIGH TERM MODEL USED STEP 8***
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Prediction of Choctawhatchee Bay Sounding J Using Logs

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable QC

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 D5XI 1 0.1927 0.1927 103.1417 0.0001
2 D1 2 0.0547 0.2474 31.3301 0.0001
3 D2 3 0.1662 0.4136 121.8562 0.0001
4 D6 4 0.0940 0.5076 81.8502 0.0001
5 D5X2 5 0.0070 0.5146 6.1954 0.0132
6 D3 6 0.0061 0.5207 5.4370 0.0202
7 D2 5 0.0000 0.5207 0.0012 0.9721
8 D8 6 0.0130 0.5337 11.9471 0.0006

***LOW TERM MODEL USED STEP 4 HIGH TERM MODEL USED STEP 8***

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable FRICTION

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 D4 1 0.2895 0.2895 176.0447 0.0001
2 D1 2 0.0479 0.3374 31.1321 0.0001
3 D5 3 0.0767 0.4140 56.2523 0.0001
4 D5X1 4 0.0224 0.4365 17.0867 0.0001
5 02XI 5 0.0127 0.4492 9.8886 0.0018
6 X2 6 0.0177 0.4669 14.1851 0.0002
7 X1 7 0.0317 0.4987 26.9771 0.0001
8 D5X2 8 0.0174 0.5161 15.3005 0.0001
9 D3X1 9 0.0031 0.5192 2.7574 0.0975

10 D5X1 8 0.0002 0.5190 0.1478 0.7009

***LOW TERM MODEL USED STEP 6 HIGH TERM MODEL USED STEP 10***
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Apalachicola River Regression Models

Prediction of Apalachicola River Sounding #11

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable N

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 D1 1 0.1412 0.1412 36.0128 0.0001
2 D5XI 2 0.1904 0.3316 62.0849 0.0001
3 D7 3 0.0129 0.3445 4.2833 0.0397
4 D2X2 4 0.0236 0.3682 8.0811 0.0049
5 D5X1 3 0.0004 0.3678 0.1246 0.7244

***LOW TERM MODEL USED STEP 2 HIGH TERM MODEL USED STEP 5***

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Proce'ure for Dependent Variable LOGN

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 D1 1 0.4459 0.4459 176.2034 0.0001
2 D4 2 0.2103 0.6561 133.2883 0.0001
3 DIX2 3 0.0588 0.7149 44.7632 0.0001
4 DIXi 4 0.0067 0.7216 5.1595 0.0241
5 D8 5 0.0036 0.7252 2.8477 0.0930
6 D2 6 0.0164 0.7416 13.5530 0.0003

***LOW TERM MODEL USED STEP 3 HIGH TERM MODEL USED STEP 6***
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Prediction of Apalachicola River Sounding #16

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable N

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 D1 1 0.1341 0.1341 33.7521 0.0001
2 D4XI 2 0.2016 0.3356 65.8374 0.0001
3 D6 3 0.0171 0.3528 5.7115 0.0177
4 DSXI 4 0.0146 0.3673 4.9589 0.0270
5 02 5 0.0097 0.3770 3.3171 0.0700
6 D1 4 0.0010 0.3760 0.3590 0.5497
7 D3X1 5 0.0073 0.3833 2.5360 0.1128

***LOW TERM MODEL USED STEP 2 HIGH TERM MODEL USED STEP 7***

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable LOGN

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 D1 1 0.4356 0.4356 168.2783 0.0001
2 D3 2 0.2100 0.6456 128.5691 0.0001
3 DIX2 3 0.0652 0.7108 48.6813 0.0001

***LOW TERM MODEL USED STEP 2 HIGH TERM MODEL USED STEP 3***
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Prediction of Apalachicola River Sounding #19

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable N

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 D1 1 0.1577 0.1577 39.6825 0.0001
2 D5X1 2 0.1813 0.3390 57.8650 0.0001
3 D7 3 0.0211 0.3601 6.9326 0.0091
4 D2X2 4 0.0302 0.3902 10.3381 0.0015
5 D5XI 3 0.0025 0.3877 0.8646 0.3535

***LOW TERM MODEL USED STEP 2 HIGH TERM MODEL USED STEP 5***

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable LOGN

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 D1 1 0.4671 0.4671 185.8142 0.0001
2 D4 2 0.2181 0.6852 146.2275 0.0001
3 DIX2 3 0.0602 0.7454 49.6291 0.0001
4 DIXI 4 0.0065 0.7519 5.4656 0.0203
5 D5X2 5 0.0030 0.7548 2.5087 0.1147
6 D4XI 6 0.0158 0.7707 14.3026 0.0002

***LOW TERM MODEL USED STEP 3 HIGH TERM MODEL USED STEP 6***
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Archer Landfill Regression Models

Prediction of Archer Landfill Sounding #4

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable LOGQC

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 D1 1 0.7090 0.7090 426.4126 0.0001
2 Y2 2 0.0662 0.7752 51.2417 0.0001
3 D3 3 0.0389 0.8141 36.1663 0.0001
4 DIXI 4 0.0077 0.8218 7.4135 0.0071
5 D5X2 5 0.0217 0.8435 23.7309 0.0001
6 X1 6 0.0080 0.8515 9.1323 0.0029
7 X2 7 0.0117 0.8631 14.4218 0.0002
8 D1Y2 8 0.0027 0.8659 3.4294 0.0658
9 Y2 7 0.0001 0.8658 0.0902 0.7643

10 D1X2 8 0.0048 0.8706 6.1890 0.0138
11 YI 9 0.0063 0.8769 8.5186 0.0040

***LOW TERM MODEL USED STEP 3 HIGH TERM MODEL USED STEP 11***

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable LOGFS

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 DI 1 0.6593 0.6593 338.6691 0.0001
2 Y2 2 0.1278 0.7871 104.4271 0.0001
3 DIYl 3 0.0217 0.8088 19.6082 0.0001
4 D2Y' 4 0.0402 0.8489 45.7290 0.0001
5 D5XI 5 0.0055 0.8545 6.4980 0.0117
6 D2XI 6 0.0087 0.8632 10.8155 0.0012
7 D5 7 0.0057 0.8688 7.2993 0.0076
8 D2YI 6 0.0013 0.8676 1.6311 0.2033
9 XI 7 0.0043 0.8719 5.6529 0.0185

10 DiXI 8 0.0047 0.8766 6.4321 0.0121
11 DlYI 7 0.0011 0.8755 1.4779 0.2258
12 D7 8 0.0069 0.8824 9.8546 0.0020
13 D2X1 7 0.0009 0.8815 1.2646 0.2624
14 Y1 8 0.0038 0.8853 5.5860 0.0192
15 X2 9 0.0034 0.8887 5.0873 0.0254
16 D1X2 10 0.0033 0.8920 5.0223 0.0263
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17 DYI 11 0.0031 0.8951 4.8658 0.0288
18 D5X2 12 0.0017 0.8968 2.7073 0.1018
19 D5Y1 13 0.0061 0.9029 10.2075 0.0017
20 D4X1 14 0.0017 0.9045 2.8618 0.0926

***LOW TERM MODEL USED STEP 4 HIGH TERM MODEL USED STEP 20***

Prediction of Archer Landfill Sounding #5

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable LOGQC

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 D1 1 0.6682 0.6682 352.5056 0.0001
2 Y2 2 0.0984 0.7667 73.3880 0.0001
3 D3 3 0.0420 0.8086 37.9512 0.0001
4 DIX2 4 0.0119 0.8205 11.3642 0.0009
5 D5X2 5 0.0180 0.8386 19.1177 0.0001
6 X1 6 0.0115 0.8501 13.0581 0.0004
7 YI 7 0.0086 0.8587 10.3072 0.0016
8 X2 8 0.0036 0.8623 4.3704 0.0381
9 D2 9 0.0032 0.8654 3.9352 0.0489
10 D6 10 0.0122 0.8777 16.5758 0.0001
11 D1 9 0.0001 0.8776 0.1446 0.7042

***LOW TERM MODEL USED STEP 5 HIGH TERM MODEL USED STEP 11***

All variables in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable LOGFS

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 DI 1 0.6647 0.6647 346.9552 0.0001
2 Y2 2 0.1198 0.7845 96.7581 0.0001
3 D3 3 0.0247 0.8092 22.4109 0.0001
4 D1Y1 4 0.0162 0.8254 15.9484 0.0001
5 D3YI 5 0.0195 0.8449 21.4480 0.0001
6 D8 6 0.0035 0.8484 3.9813 0.0476
7 D3 5 0.0000 0.8484 0.0143 0.9050
8 D2YI 6 0.0032 0.8516 3.6438 0.0580
9 DIYI 5 0.0017 0.8499 1.9987 0.1593

10 D5Y2 6 0.0053 0.8552 6.2600 0.0133
11 DIX2 7 0.0023 0.8575 2.7837 0.0971
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12 XI 8 0.0086 0.8662 10.8243 0.0012
13 D5Y2 7 0.0017 0.8645 2.0737 0.1517
14 X2 8 0.0055 0.8701 7.1718 0.0081
15 D7 9 0.0031 0.8732 4.1056 0.0443
16 D4X2 10 0.0107 0.8838 15.2366 0.0001
17 D3YI 9 0.0007 0.8831 1.0242 0.3130
18 D2Y1 8 0.0004 0.8828 0.5053 0.4782
19 X2 7 0.0007 0.8820 1.0423 0.3088
20 YI 8 0.0038 0.8858 5.5960 0.0191

***LOW TERM MODEL USED STEP 5 HIGH TERM MODEL USED STEP 20***

Prediction of Archer Landfill Sounding #8

All variables in the model are significant at the*0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable LOGQC

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 DI 1 0.6739 0.6739 363.7762 0.0001
2 Y2 2 0.0852 0.7591 61.8734 0.0001
3 D3 3 0.0454 0.8045 40.3662 0.0001
4 D1X1 4 0.0101 0.8146 9.4490 0.0025
5 D5X2 5 0.0174 0.8320 17.8703 0.0001
6 X1 6 0.0069 0.8390 7.3546 0.0074
7 D2 7 0.0035 0.8425 3.7748 0.0537
8 D7 8 0.0068 0.8492 7.5744 0.0066
9 D1 7 0.0008 0.8484 0.9171 0.3396
10 X2 8 0.0034 0.8518 3.9062 0.0497
11 YI 9 0.0030 0.8548 3.4672 0.0643

***LOW TERM MODEL USED STEP 5 HIGH TERM MODEL USED STEP 11***
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All variables in the model are significant at the .0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Procedure for Dependent Variable LOGFS

Variable Number Partial Model
Step Entered Removed In R**2 R**2 F Prob>F

1 DI 1 0.6653 0.6653 349.8589 0.0001
2 Y2 2 0.1175 0.7828 94.6212 0.0001
3 03 3 0.0259 0.8086 23.5154 0.0001
4 DY1 4 0.0158 0.8244 15.5658 0.0001
5 D3Y1 5 0.0173 0.8418 18.8486 0.0001
6 D3 4 0.0019 0.8399 2.0656 0.1525
7 D8 5 0.0045 0.8444 4.9571 0.0273
8 D2Y2 6 0.0023 0.8466 2.5600 0.1114

***LOW TERM MODEL USED STEP 4 HIGH TERM MODEL USED STEP 8***
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